Molecular evolution of the primate antiviral restriction factor tetherin. 2010

Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China.

BACKGROUND Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu). It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the red-queen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption. RESULTS Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implying that the primate Tetherin may retain broad spectrum of antiviral activity by maintaining structure stability. CONCLUSIONS These results conclude that the molecular evolution of Tetherin may be attributed to the host-virus arms race, supporting the Red Queen hypothesis, and Tetherin may be in an intermediate stage in transition from neutral to pervasive adaptive evolution.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011323 Primates An order of mammals consisting of more than 300 species that include LEMURS; LORISIDAE; TARSIERS; MONKEYS; and HOMINIDS. They are characterized by a relatively large brain when compared with other terrestrial mammals, forward-facing eyes, the presence of a CALCARINE SULCUS, and specialized MECHANORECEPTORS in the hands and feet which allow the perception of light touch. Primate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation
D058851 GPI-Linked Proteins A subclass of lipid-linked proteins that contain a GLYCOSYLPHOSPHATIDYLINOSITOL LINKAGE which holds them to the CELL MEMBRANE. GPI-Anchored Proteins,GPI-Linked Membrane Proteins,Glycosylphosphatidylinositol Linked Proteins,GPI Anchored Proteins,GPI Linked Membrane Proteins,GPI Linked Proteins,Membrane Proteins, GPI-Linked,Proteins, GPI-Anchored,Proteins, GPI-Linked,Proteins, GPI-Linked Membrane,Proteins, Glycosylphosphatidylinositol Linked
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic

Related Publications

Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
December 2015, Journal of virology,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
February 2012, Journal of virology,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
September 2015, Oncotarget,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
October 2022, Journal of virology,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
January 2014, Frontiers in microbiology,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
January 2010, Bing du xue bao = Chinese journal of virology,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
January 2016, Current HIV research,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
August 2016, Cell host & microbe,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
January 2013, Current topics in microbiology and immunology,
Jun Liu, and Keping Chen, and Jian-Hua Wang, and Chiyu Zhang
August 2011, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!