LPS-induced epithelial-mesenchymal transition of intrahepatic biliary epithelial cells. 2011

Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University, Chongqing, China.

BACKGROUND Recent studies have revealed that the epithelial-mesenchymal transition (EMT) of bile duct epithelial cells is engaged in hepatic fibrogenesis. However, the association between etiological factors of liver disease such as virus or bacterial infection and EMT remains to be investigated. The present study focuses on the inductive role of endotoxin, the main component of the cell wall's ectoblast of gram-negative bacteria, in the EMT of human intrahepatic biliary epithelial cells (HIBEpiCs). METHODS The expressions of E-cadherin, S100A4, α-SMA, TGF-β1, and Smad2/3 in HIBEpiCs cultured with or without lipopolysaccharide LPS, were detected by real-time PCR and Western blotting. We blocked the expression of TGF-β1 using paclitaxel and knocked down Smad2/3 by siRNA to explore the role of TGF-β1/Smad2/3 pathway in the EMT of HIBEpiCs. RESULTS Resting HIBEpiCs showed epithelioid cobblestone morphology, and underwent a phenotypic change to produce bipolar cells with a fibroblastic morphology when co-cultured with LPS. After LPS stimulation and the up-regulation of mRNA and protein expression of TGF-β1 and Smad2/Smad3, the mRNA and protein expression of mesenchymal markers (S100A and α-SMA) increased significantly. Paclitaxel inhibited the mRNA and protein expression of TGF-β1 in vitro. Knock-down of Smad2/3 by siRNA led to up-regulation of epithelial markers E-cadherin and down-regulation of S100A and α-SMA, indicating a reversal of the EMT. CONCLUSIONS LPS can induce the expression of TGF-ß1 and a subsequent EMT in HIBEpiCs, and the inhibition of TGF-ß1 or Smad 2/3 could reverse this EMT, suggesting that LPS may play a potential role in the EMT of HIBEpiCs.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009418 S100 Proteins A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution. Antigen S 100,Nerve Tissue Protein S 100,S100 Protein,S-100 Protein,S100 Protein Family,Protein, S100,S 100 Protein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000972 Antineoplastic Agents, Phytogenic Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity. Antineoplastics, Botanical,Antineoplastics, Phytogenic,Agents, Phytogenic Antineoplastic,Botanical Antineoplastics,Phytogenic Antineoplastic Agents,Phytogenic Antineoplastics
D001659 Biliary Tract The BILE DUCTS and the GALLBLADDER. Biliary System,Biliary Tree,System, Biliary,Tract, Biliary,Tree, Biliary
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
December 2016, The Tohoku journal of experimental medicine,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
February 2016, Molecular medicine reports,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
November 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
March 2024, Theriogenology,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
January 2007, Verhandlungen der Deutschen Gesellschaft fur Pathologie,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
July 2018, Cell biochemistry and function,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
October 2012, Innate immunity,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
December 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
February 2014, Journal of gastroenterology and hepatology,
Lijin Zhao, and Rigao Yang, and Long Cheng, and Maijian Wang, and Yan Jiang, and Shuguang Wang
January 2021, Journal of Cancer,
Copied contents to your clipboard!