Tumor necrosis factor-alpha enhances cytokine production by AML blasts. 1991

I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
Clinical Research Institute of Montreal, Canada.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D001752 Blast Crisis An advanced phase of chronic myelogenous leukemia, characterized by a rapid increase in the proportion of immature white blood cells (blasts) in the blood and bone marrow to greater than 30%. Blast Phase,Blast Crises,Blast Phases,Crises, Blast,Crisis, Blast,Phase, Blast,Phases, Blast
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor

Related Publications

I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
December 2009, Journal of pharmacological sciences,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
December 1991, Brain research,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
August 1993, Leukemia,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
April 1998, Journal of periodontology,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
March 2002, The Journal of trauma,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
December 1996, European cytokine network,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
March 2012, FEMS microbiology letters,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
March 2000, Experimental neurology,
I Murohashi, and J C Rodriguez-Cimadevilla, and T Hoang
January 1993, Nephron,
Copied contents to your clipboard!