Human monocytes inhibit lymphokine-activated killer cell expansion in vitro. 1991

P L Triozzi, and W A Aldrich, and J J Rinehart
Department of Medicine, Ohio State University, Columbus 43210.

Depleting monocytes from human peripheral blood mononuclear cells (PBMC) enhances the in vitro activation of lymphokine-activated killer (LAK) cells. To determine if monocytes also altered LAK-cell expansion, we evaluated two methods of depleting monocytes from PBMC: nylon wool adherence (NWA) and phenylalanine methyl ester (PME) treatment. Both methods of depleting monocytes enhanced interleukin-2 (IL-2) driven, LAK-cell expansion; LAK expansion, however, was significantly greater after depletion with NWA than after PME. LAK cytotoxicity after NWA and PME depletion was equivalent. The degree of monocyte depletion, determined by evaluating morphology and the number of Leu-M3 (CD14) positive cells, and the proliferation of Leu 19 (CD56), OKT-3 (CD3), Leu2 (CD8), and Leu 3a (CD4) positive cells was also equivalent. Exposure of IL-2 activated cells to PME did not alter their cytotoxic activity. However, sequential treatment of PBMC with NWA, then PME, or with PME and then NWA, resulted in reduced expansion. This reduction in expansion was similar to PBMC treated with PME alone. Exposure of PME-depleted cells to nylon wool or to supernatants obtained from cells adherent to nylon wool further decreased LAK expansion relative to cells treated with NWA alone. We conclude that even at relatively low cell density, human monocytes markedly inhibit LAK-cell expansion in IL-2 driven PBMC cultures. Further, depletion of monocytes by NWA adherence is more effective than by treatment with PME, possibly due to subtle cellular damage induced by this latter treatment. These findings have implication for the in vitro and in vivo generation of LAK-cells by IL-2.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015979 Killer Cells, Lymphokine-Activated Cytolytic lymphocytes with the unique capacity of killing natural killer (NK)-resistant fresh tumor cells. They are INTERLEUKIN-2-activated NK cells that have no MAJOR HISTOCOMPATIBILITY COMPLEX restriction or need for antigen stimulation. LAK cells are used for ADOPTIVE IMMUNOTHERAPY in cancer patients. LAK Cells,Lymphokine-Activated Killer Cells,Cell, LAK,Cell, Lymphokine-Activated Killer,Cells, LAK,Cells, Lymphokine-Activated Killer,Killer Cell, Lymphokine-Activated,Killer Cells, Lymphokine Activated,LAK Cell,Lymphokine Activated Killer Cells,Lymphokine-Activated Killer Cell
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

P L Triozzi, and W A Aldrich, and J J Rinehart
January 1988, Cellular immunology,
P L Triozzi, and W A Aldrich, and J J Rinehart
January 1989, Cancer immunology, immunotherapy : CII,
P L Triozzi, and W A Aldrich, and J J Rinehart
July 1989, Blut,
P L Triozzi, and W A Aldrich, and J J Rinehart
January 1991, Cancer detection and prevention,
P L Triozzi, and W A Aldrich, and J J Rinehart
January 1994, Cancer immunology, immunotherapy : CII,
P L Triozzi, and W A Aldrich, and J J Rinehart
January 1988, Immunology today,
P L Triozzi, and W A Aldrich, and J J Rinehart
September 1993, Minerva endocrinologica,
P L Triozzi, and W A Aldrich, and J J Rinehart
January 1988, Pharmacology & therapeutics,
P L Triozzi, and W A Aldrich, and J J Rinehart
January 1988, Voprosy onkologii,
Copied contents to your clipboard!