Optic nerve compression and retinal degeneration in Tcirg1 mutant mice lacking the vacuolar-type H-ATPase a3 subunit. 2010

Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Japan.

BACKGROUND Vacuolar-type proton transporting ATPase (V-ATPase) is involved in the proper development of visual function. Mutations in the Tcirg1 (also known as Atp6V0a3) locus, which encodes the a3 subunit of V-ATPase, cause severe autosomal recessive osteopetrosis (ARO) in humans. ARO is often associated with impaired vision most likely because of nerve compression at the optic canal. We examined the ocular phenotype of mice deficient in Tcirg1 function. RESULTS X-ray microtomography showed narrowed foramina in the skull, suggesting that optic nerve compression occurred in the a3-deficient (Tcirg1-/-) mice. The retina of the mutant mice had normal architecture, but the number of apoptotic cells was increased at 2-3 wks after birth. In the ocular system, the a3 subunit accumulated in the choriocapillary meshwork in uveal tissues. Two other subunit isoforms a1 and a2 accumulated in the retinal photoreceptor layer. We found that the a4 subunit, whose expression has previously been shown to be restricted to several transporting epithelia, was enriched in pigmented epithelial cells of the retina and ciliary bodies. The expression of a4 in the uveal tissue was below the level of detection in wild-type mice, but it was increased in the mutant choriocapillary meshwork, suggesting that compensation may have occurred among the a subunit isoforms in the mutant tissues. CONCLUSIONS Our findings suggest that a similar etiology of visual impairment is involved in both humans and mice; thus, a3-deficient mice may provide a suitable model for clinical and diagnostic purposes in cases of ARO.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009408 Nerve Compression Syndromes Mechanical compression of nerves or nerve roots from internal or external causes. These may result in a conduction block to nerve impulses (due to MYELIN SHEATH dysfunction) or axonal loss. The nerve and nerve sheath injuries may be caused by ISCHEMIA; INFLAMMATION; or a direct mechanical effect. Entrapment Neuropathies,Nerve Entrapments,External Nerve Compression Syndromes,Internal Nerve Compression Syndromes,Nerve Compression Syndromes, External,Nerve Compression Syndromes, Internal,Compression Syndrome, Nerve,Compression Syndromes, Nerve,Entrapment, Nerve,Entrapments, Nerve,Nerve Compression Syndrome,Nerve Entrapment,Neuropathies, Entrapment,Neuropathy, Entrapment,Syndrome, Nerve Compression,Syndromes, Nerve Compression
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D010022 Osteopetrosis Excessive formation of dense trabecular bone leading to pathological fractures; OSTEITIS; SPLENOMEGALY with infarct; ANEMIA; and extramedullary hemopoiesis (HEMATOPOIESIS, EXTRAMEDULLARY). Albers-Schoenberg Disease,Marble Bone Disease,Osteosclerosis Fragilis,Albers-Schonberg Disease,Albers-Schonberg Disease, Autosomal Dominant,Albers-Schönberg Disease,Autosomal Dominant Osteopetrosis Type 2,Congenital Osteopetrosis,Marble Bones, Autosomal Dominant,Osteopetrosis Autosomal Dominant Type 2,Osteopetrosis, Autosomal Dominant 2,Osteopetrosis, Autosomal Dominant, Type II,Osteosclerosis Fragilis Generalisata,Albers Schoenberg Disease,Albers Schonberg Disease,Albers Schonberg Disease, Autosomal Dominant,Albers Schönberg Disease,Disease, Albers-Schoenberg,Disease, Albers-Schonberg,Disease, Albers-Schönberg,Disease, Marble Bone,Osteopetroses,Osteosclerosis Fragilis Generalisatas
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D012162 Retinal Degeneration A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304) Degeneration, Retinal,Degenerations, Retinal,Retinal Degenerations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D025262 Vacuolar Proton-Translocating ATPases Proton-translocating ATPases that are involved in acidification of a variety of intracellular compartments. Lysosomal F(1)F(0) ATPase,Lysosomal Proton-Translocating ATPases,V-Type ATPase,Vacuolar ATPase,Vacuolar F(1)F(0) ATPase,Vacuolar F(1)F(0) ATPases,Vacuolar H+-ATPase,Vacuolar Membrane H(+)-ATPase,ATPase, V-Type,ATPase, Vacuolar,ATPases, Lysosomal Proton-Translocating,H+-ATPase, Vacuolar,Lysosomal Proton Translocating ATPases,Proton-Translocating ATPases, Lysosomal,V Type ATPase,Vacuolar H+ ATPase

Related Publications

Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
August 2000, Human molecular genetics,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
November 2010, The Journal of biological chemistry,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
August 2012, The Journal of biological chemistry,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
October 2003, Molecular cell,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
January 1992, Acta physiologica Scandinavica. Supplementum,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
August 1993, The Journal of biological chemistry,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
June 2003, Hearing research,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
January 2005, Neuroscience,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
September 2021, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Nobuyuki Kawamura, and Hiroyuki Tabata, and Ge-Hong Sun-Wada, and Yoh Wada
December 2007, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!