Activation of collagen gene expression in keloids: co-localization of type I and VI collagen and transforming growth factor-beta 1 mRNA. 1991

J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
Department of Dermatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107.

Untreated, clinically active keloids were examined as model system to study the spatial expression of extracellular matrix and transforming growth factor-beta 1 (TGF-beta 1) genes in fibrotic skin diseases. In situ hybridizations localized active expression of type I and VI collagen genes to the areas containing an abundance of fibroblasts and apparently representing the expanding border of the lesions. Within this zone, microvascular endothelial cells also expressed the type I collagen genes, as evaluated by simultaneous use of in situ hybridization for collagen gene expression and immunolocalization for factor VIII-related antigen, a marker for endothelial cell differentiation. Slot-blot hybridizations of RNA isolated from this zone suggested that the expression of type I and IV collagen genes was selectively enhanced, as compared to type III collagen gene expression. TGF-beta 1 protein and mRNA were also detected in areas active in type I and type VI collagen gene expression, indicating that TGF-beta 1 gene is transcribed and the corresponding protein is deposited in areas of elevated collagen gene expression, including microvascular endothelial cells. We conclude that the initial step in the development of fibrotic reaction in keloids involves the expression of the TGF-beta 1 gene by the neovascular endothelial cells, thus activating the adjacent fibroblasts to express markedly elevated levels of TGF-beta 1, as well as type I and VI collagen genes.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007627 Keloid A sharply elevated, irregularly shaped, progressively enlarging scar resulting from formation of excessive amounts of collagen in the dermis during connective tissue repair. It is differentiated from a hypertrophic scar (CICATRIX, HYPERTROPHIC) in that the former does not spread to surrounding tissues. Keloids
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
May 1987, The Journal of biological chemistry,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
October 1990, Journal of cellular biochemistry,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
September 1992, FEBS letters,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
November 1991, The Biochemical journal,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
August 1999, Annals of plastic surgery,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
January 1999, Cytobios,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
November 2014, Biochemical and biophysical research communications,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
February 1997, Arthritis and rheumatism,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
October 1993, Laboratory investigation; a journal of technical methods and pathology,
J Peltonen, and L L Hsiao, and S Jaakkola, and S Sollberg, and M Aumailley, and R Timpl, and M L Chu, and J Uitto
December 1991, Molecular and cellular endocrinology,
Copied contents to your clipboard!