Bile acids and bile alcohols in a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment. 1991

H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
Department of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden.

Duodenal bile, urine, plasma, and feces from a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency were analyzed by fast atom bombardment mass spectrometry and gas chromatography-mass spectrometry to investigate the formation and excretion of abnormal bile acids and bile alcohols. The biliary bile salts consisted of glycocholic acid (25%) and of sulfated and glycine conjugated di- and trihydroxycholenoic acids (55%), two C27 bile acids, and eleven sulfated bile alcohols (mainly tetrols, 20%), all having 3 beta,7 alpha-dihydroxy-delta 5 or 3 beta,7 alpha,12 alpha-trihydroxy-delta 5 ring structures. In plasma, sulfated cholenoic acids constituted 65% and unconjugated 3 beta,7 alpha-dihydroxy-5-cholestenoic acid 25% of the total level, 71 micrograms/ml. The urinary excretion of the former was 30.4 mg/day and that of unsaturated bile alcohol sulfates, mainly pentols, 7 mg/day. The predominant bile acid in feces was an unconjugated epimer of 3 beta,7 alpha,12 alpha-trihydroxy-5-cholenoic acid, and small amounts of cholic acid were present. The minimum total excretion was 11.3 mg/day. Treatment with chenodeoxycholic acid resulted in marked clinical improvement and normalized liver function tests. Further studies are needed to define the mechanism of action. Plasma bile acids decreased to 1.6 micrograms/ml and urinary excretion to 3.4 mg/day. Chenodeoxycholic and ursodeoxycholic acids became predominant in all samples. The fecal excretion of unsaturated cholenoic acid sulfates increased to 40 mg/day compared to 89 mg/day of saturated bile acids. The results provide further support for a defective hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency, and indicate that the 3 beta-hydroxy-delta 5 bile acids are formed via 7 alpha-hydroxycholesterol. The formation of glycocholic acid may be due to an incomplete enzyme defect or to transformation of the 3 beta-hydroxy-delta 5 structure by bacterial and hepatic enzymes during an enterohepatic circulation.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D002635 Chenodeoxycholic Acid A bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones. Chenic Acid,Chenodeoxycholate,Chenodiol,Gallodesoxycholic Acid,Chenique Acid,Chenix,Chenofalk,Chenophalk,Henohol,Quenobilan,Quenocol,Sodium Chenodeoxycholate,Acid, Chenic,Acid, Chenique,Acid, Chenodeoxycholic,Acid, Gallodesoxycholic,Chenodeoxycholate, Sodium
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D002777 Cholestanols Cholestanes substituted in any position with one or more hydroxy groups. They are found in feces and bile. In contrast to bile acids and salts, they are not reabsorbed. Bile Alcohol,Bile Alcohols,Hydroxycholestane,Hydroxycholestanes,Alcohol, Bile,Alcohols, Bile
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile

Related Publications

H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
October 1990, Archives of disease in childhood,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
January 1992, Journal of inherited metabolic disease,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
January 1998, Ryoikibetsu shokogun shirizu,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
June 2010, Journal of pediatric gastroenterology and nutrition,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
December 1990, The Journal of clinical investigation,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
May 1995, Human genetics,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
January 2010, Journal of pediatric gastroenterology and nutrition,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
December 1998, Acta paediatrica Japonica : Overseas edition,
H Ichimiya, and B Egestad, and H Nazer, and E S Baginski, and P T Clayton, and J Sjövall
October 2001, Journal of paediatrics and child health,
Copied contents to your clipboard!