White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. 2010

Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
Dept. of Biological Sciences, Lehman College, Bronx, NY 10468, USA.

Recent investigations have associated white teas with anti-carcinogenic, immune-boosting, and antioxidative properties that may impact human health in a manner comparable to green teas. An in-depth chemical analysis of white tea types was conducted to quantify polyphenols and antioxidant potential of 8 commercially available white teas, and compare them to green tea. Extraction and HPLC protocols were optimized and validated for the quantification of 9 phenolic and 3 methylxanthine compounds to examine inter- and intra-variation in white and green tea types and subtypes. A sampling strategy was devised to assess various subtypes procured from different commercial sources. Variation in antioxidant activity and total phenolic content (TPC) of both tea types was further assessed by the 1-1-diphenyl-2-picrylhydrazyl (DPPH) and Folin-Ciocalteau (F-C) assays, respectively. Total catechin content (TCC) for white teas ranged widely from 14.40 to 369.60 mg/g of dry plant material for water extracts and 47.16 to 163.94 mg/g for methanol extracts. TCC for green teas also ranged more than 10-fold, from 21.38 to 228.20 mg/g of dry plant material for water extracts and 32.23 to 141.24 mg/g for methanol extracts. These findings indicate that statements suggesting a hierarchical order of catechin content among tea types are inconclusive and should be made with attention to a sampling strategy that specifies the tea subtype and its source. Certain white teas have comparable quantities of total catechins to some green teas, but lesser antioxidant capacity, suggesting that white teas have fewer non-catechin antioxidants present. Practical Application: In this investigation white and green teas were extracted in ways that mimic common tea preparation practices, and their chemical profiles were determined using validated analytical chemistry methods. The results suggest certain green and white tea types have comparable levels of catechins with potential health promoting qualities. Specifically, the polyphenolic content of green teas was found to be similar to certain white tea varieties, which makes the latter tea type a potential substitute for people interested in consuming polyphenols for health reasons. Moreover, this study is among the first to demonstrate the effect subtype sampling, source of procurement, cultivation, and processing practices have on the final white tea product, as such analysis has previously been mostly carried out on green teas.

UI MeSH Term Description Entries
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002392 Catechin An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechinic Acid,Catechuic Acid,(+)-Catechin,(+)-Cyanidanol,(+)-Cyanidanol-3,(-)-Epicatechin,(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol,2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-,3,3',4',5,7-Flavanpentol,Catergen,Cianidanol,Cyanidanol-3,Epicatechin,KB-53,Z 7300,Zyma,Cyanidanol 3,KB 53,KB53
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D005511 Food Handling Any aspect of the operations in the preparation, processing, transport, storage, packaging, wrapping, exposure for sale, service, or delivery of food. Food Processing,Handling, Food,Processing, Food
D005707 Gallic Acid A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. 3,4,5-Trihydroxybenzoic Acid,Acid, Gallic
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
January 2010, Pakistan journal of pharmaceutical sciences,
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
October 2011, Pharmacognosy research,
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
October 2021, Molecules (Basel, Switzerland),
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
April 2017, Food chemistry,
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
July 2019, Antioxidants (Basel, Switzerland),
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
August 2020, Antioxidants (Basel, Switzerland),
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
January 2016, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi,
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
November 2019, Food research international (Ottawa, Ont.),
Uchenna J Unachukwu, and Selena Ahmed, and Adam Kavalier, and James T Lyles, and Edward J Kennelly
January 2015, Critical reviews in food science and nutrition,
Copied contents to your clipboard!