Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. 1991

P Levy-Mintz, and M Kielian
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.

Semliki Forest virus (SFV), an alphavirus, infects cells via a low pH-triggered membrane fusion reaction that takes place within the cellular endocytic pathway. Fusion is mediated by the heterotrimeric virus spike protein, which undergoes conformational changes upon exposure to low pH. The SFV E1 spike subunit contains a hydrophobic domain of 23 amino acids that is highly conserved among alphaviruses. This region is also homologous to a domain of the rotavirus outer capsid protein VP4. Mutagenesis of an SFV spike protein cDNA was used to evaluate the role of the E1 domain in membrane fusion. Mutant spike proteins were expressed in COS cells and assayed for cell-cell fusion activity. Four mutant phenotypes were identified: (i) substitution of Gln for Lys-79 or Leu for Met-88 had no effect on spike protein fusion activity; (ii) substitution of Ala for Asp-75, Ala for Gly-83, or Ala for Gly-91 shifted the pH threshold of fusion to a more acidic range; (iii) mutation of Pro-86 to Asp, Gly-91 to Pro, or deletion of amino acids 83 to 92 resulted in retention of the E1 subunit within the endoplasmic reticulum; and (iv) substitution of Asp for Gly-91 completely blocked cell-cell fusion activity without affecting spike protein assembly or transport. These results argue that the conserved hydrophobic domain of SFV E1 is closely involved in membrane fusion and suggest that the homologous region in rotavirus VP4 may be involved in the entry pathway of this nonenveloped virus.

UI MeSH Term Description Entries
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006596 Hexosaminidases Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Galactosaminidases,Hexosaminidase,Galactosaminidase,Glucosaminidase,Glucosaminidases
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

P Levy-Mintz, and M Kielian
October 1990, Journal of virology,
P Levy-Mintz, and M Kielian
December 1993, Journal of virology,
P Levy-Mintz, and M Kielian
September 1994, Structure (London, England : 1993),
P Levy-Mintz, and M Kielian
December 1992, Journal of virology,
P Levy-Mintz, and M Kielian
December 1999, Journal of virology,
P Levy-Mintz, and M Kielian
December 1985, The Journal of cell biology,
P Levy-Mintz, and M Kielian
March 1981, The Journal of general virology,
Copied contents to your clipboard!