Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study. 2011

Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.

Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and nine individuals with chronic, right focal subcortical stroke performed a continuous joystick-based tracking task during an initial functional magnetic resonance images (fMRI) session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequence during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased blood oxygenation level dependent (BOLD) response in left dorsal premotor cortex (PMd; BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. This study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009048 Motor Skills Performance of complex motor acts. Motor Skill,Skill, Motor,Skills, Motor
D009483 Neuropsychological Tests Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury. Aphasia Tests,Cognitive Test,Cognitive Testing,Cognitive Tests,Memory for Designs Test,Neuropsychological Testing,AX-CPT,Behavioral Assessment of Dysexecutive Syndrome,CANTAB,Cambridge Neuropsychological Test Automated Battery,Clock Test,Cognitive Function Scanner,Continuous Performance Task,Controlled Oral Word Association Test,Delis-Kaplan Executive Function System,Developmental Neuropsychological Assessment,Hooper Visual Organization Test,NEPSY,Neuropsychologic Tests,Neuropsychological Test,Paced Auditory Serial Addition Test,Repeatable Battery for the Assessment of Neuropsychological Status,Rey-Osterrieth Complex Figure,Symbol Digit Modalities Test,Test of Everyday Attention,Test, Neuropsychological,Tests, Neuropsychological,Tower of London Test,Neuropsychologic Test,Test, Cognitive,Testing, Cognitive,Testing, Neuropsychological,Tests, Cognitive
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain

Related Publications

Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
June 2015, Behavioural brain research,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
September 2007, Neuroreport,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
March 2015, Psychological research,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
June 2007, Neuropsychological rehabilitation,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
December 1999, Neuropsychologia,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
May 1999, Memory & cognition,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
January 2016, PloS one,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
September 2011, Neurorehabilitation and neural repair,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
July 2021, Experimental brain research,
Sean K Meehan, and Bubblepreet Randhawa, and Brenda Wessel, and Lara A Boyd
April 2000, Memory & cognition,
Copied contents to your clipboard!