Epilepsy in brain tumor patients. 2010

Andrea O Rossetti, and Roger Stupp
Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland. andrea.rossetti@chuv.ch

OBJECTIVE This review focuses on anticonvulsant treatments in patients with brain tumors and epilepsy, in consideration of the rapidly expanding spectrum of these agents. RESULTS Despite the fact that this clinical condition is frequent, scarce evidence is available on this topic. Current American Association of Neurology practice parameters, published a decade ago, discourage the prescription of prophylactic anticonvulsant treatment; this should, however, be implemented after a first seizure in view of the high recurrence risk. Several observational series describe the use of newer anti-epileptic compounds in this clinical setting, suggesting that these should be preferred to traditional anticonvulsants in view of their safety regarding pharmacokinetic interactions and better tolerability. In particular, levetiracetam and pregabalin seem promising. Anti-epileptic treatment leads to a complete control or a marked reduction of seizures in most patients with brain tumors; however, there is currently no evidence that efficacy is different among all marketed anti-epileptic drugs. CONCLUSIONS Despite the lack of high-level evidence data, the use of anticonvulsants devoid of pharmacokinetic interactions should be recommended in patients with epilepsy symptomatic of brain tumors. Prospective, comparative studies are needed to address open questions regarding the role of specific agents and optimal treatment duration.

UI MeSH Term Description Entries
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002985 Clinical Protocols Precise and detailed plans for the study of a medical or biomedical problem and/or plans for a regimen of therapy. Protocols, Clinical,Research Protocols, Clinical,Treatment Protocols,Clinical Protocol,Clinical Research Protocol,Clinical Research Protocols,Protocol, Clinical,Protocol, Clinical Research,Protocols, Clinical Research,Protocols, Treatment,Research Protocol, Clinical,Treatment Protocol
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes
D018570 Risk Assessment The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988) Assessment, Risk,Benefit-Risk Assessment,Risk Analysis,Risk-Benefit Assessment,Health Risk Assessment,Risks and Benefits,Analysis, Risk,Assessment, Benefit-Risk,Assessment, Health Risk,Assessment, Risk-Benefit,Benefit Risk Assessment,Benefit-Risk Assessments,Benefits and Risks,Health Risk Assessments,Risk Analyses,Risk Assessment, Health,Risk Assessments,Risk Benefit Assessment,Risk-Benefit Assessments

Related Publications

Andrea O Rossetti, and Roger Stupp
November 2022, Current opinion in oncology,
Andrea O Rossetti, and Roger Stupp
June 2014, Journal of neuro-oncology,
Andrea O Rossetti, and Roger Stupp
August 2012, Journal of neuro-oncology,
Andrea O Rossetti, and Roger Stupp
April 2022, Epilepsy & behavior : E&B,
Andrea O Rossetti, and Roger Stupp
January 1959, Clinical neurosurgery,
Andrea O Rossetti, and Roger Stupp
August 2018, Neurologia i neurochirurgia polska,
Andrea O Rossetti, and Roger Stupp
June 2012, Current neuropharmacology,
Andrea O Rossetti, and Roger Stupp
January 2016, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Andrea O Rossetti, and Roger Stupp
January 1991, Pediatrie,
Andrea O Rossetti, and Roger Stupp
December 2021, Epilepsy & behavior : E&B,
Copied contents to your clipboard!