Protease-activated receptor-2 regulates cyclooxygenase-2 expression in human bile duct cancer via the pathways of mitogen-activated protein kinases and nuclear factor kappa B. 2011

Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
Department of Surgery I, Oita University Faculty of Medicine, 1-1 Hasama-machi, Yufu, Oita 879-5593, Japan. heguchi@med.oita-u.ac.jp

OBJECTIVE Recent studies have suggested that protease-activated receptor-2 (PAR-2) activity correlates with cell proliferation and tumor growth, and its activation induces expression of cyclooxygenase-2 (COX-2). However, no previous reports have investigated PAR-2 signaling pathways in bile duct cancer. The aim of this study was to determine whether PAR-2 activation can regulate COX-2 expression via mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) in human bile duct cancer cells. METHODS We immunohistochemically examined PAR-2 and COX-2 expression in 104 resected human specimens of extrahepatic bile duct cancer. We then determined how inhibitors of MAPKs and NF-κB signaling pathways influence COX-2 expression under PAR-2 activation in HuCCT1 and TKKK, human bile duct cancer cell lines. RESULTS PAR-2 and COX-2 proteins were immunohistochemically recognized in 63 and 57% of specimens and were significantly correlated. PAR-2 agonist peptide activated mRNA and protein expression of COX-2 in HuCCT1 and TKKK. Pharmacologic blockade of p44/42 or p38 MAPK significantly inhibited PAR-2-activated mRNA and protein expression of COX-2 in both cells. COX-2 protein expression was also inhibited by the blocker of NF-κB pathway in both cells. CONCLUSIONS PAR-2 may regulate COX-2 expression in human bile duct cancer via the MAPKs and NF-κB pathways.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001650 Bile Duct Neoplasms Tumors or cancer of the BILE DUCTS. Bile Duct Cancer,Cancer of Bile Duct,Cancer of the Bile Duct,Neoplasms, Bile Duct,Bile Duct Cancers,Bile Duct Neoplasm,Cancer, Bile Duct,Cancers, Bile Duct,Neoplasm, Bile Duct
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D017734 Bile Ducts, Extrahepatic Passages external to the liver for the conveyance of bile. These include the COMMON BILE DUCT and the common hepatic duct (HEPATIC DUCT, COMMON). Extrahepatic Biliary System,Bile Duct, Extrahepatic,Biliary System, Extrahepatic,Biliary Systems, Extrahepatic,Duct, Extrahepatic Bile,Ducts, Extrahepatic Bile,Extrahepatic Bile Duct,Extrahepatic Bile Ducts,Extrahepatic Biliary Systems,System, Extrahepatic Biliary,Systems, Extrahepatic Biliary

Related Publications

Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
October 2009, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
February 2007, Cancer research,
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
November 2012, Oncology reports,
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
March 2003, The Journal of biological chemistry,
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
December 2019, International immunopharmacology,
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
March 2004, Eksperimental'naia onkologiia,
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
March 2016, Laboratory animal research,
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
June 2013, Clinical and vaccine immunology : CVI,
Hidetoshi Eguchi, and Kentaro Iwaki, and Kohei Shibata, and Tadashi Ogawa, and Masayuki Ohta, and Seigo Kitano
May 2008, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics,
Copied contents to your clipboard!