Threonyl-tRNA synthetase from yeast: aminoacylation of tRNA on its non-accepting 3'-terminal hydroxyl group and its behaviour in enzyme-catalyzed deacylation. 1978

G L Igloi, and F Cramer

Methods have been developed by which tRNA Thr may be aminoacylated at the normally non-accepting 3'-terminal ribose OH. Two of the methods utilize the mischarging ability of the synthetases under special conditions of low salt concentration and presence of organic solvents. The third method demonstrates for the first time that for some synthetases the 2',3' specificity may be manipulated by use of similar special conditions. In the case of threonyl-tRNA synthetase, Thr-tRNAThr-C-C-A(3'd) has been synthesised by this method. The behaviour of threonyl esters of tRNAThr-C-C-A, tRNAThr-C-C-A(2'd) and tRNA Thr-C-C-A-(3'd) in the free enzyme-catalyzed deacylation has been studied and the results indicate that the cis diol functional group is necessary for this hydrolysis. The position on the terminal ribose from which the amino acid is removed in this reaction remains to be identified.

UI MeSH Term Description Entries
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013914 Threonine-tRNA Ligase An enzyme that activates threonine with its specific transfer RNA. EC 6.1.1.3. Threonyl T RNA Synthetase,Thr-tRNA Ligase,Threonyl-tRNA Synthetase,Ligase, Thr-tRNA,Ligase, Threonine-tRNA,Synthetase, Threonyl-tRNA,Thr tRNA Ligase,Threonine tRNA Ligase,Threonyl tRNA Synthetase
D014637 Valine-tRNA Ligase An enzyme that activates valine with its specific transfer RNA. EC 6.1.1.9 Valyl T RNA Synthetase,Val-tRNA Ligase,Valyl-tRNA Synthetase,Ligase, Val-tRNA,Ligase, Valine-tRNA,Synthetase, Valyl-tRNA,Val tRNA Ligase,Valine tRNA Ligase,Valyl tRNA Synthetase

Related Publications

G L Igloi, and F Cramer
November 2008, Proceedings of the National Academy of Sciences of the United States of America,
G L Igloi, and F Cramer
April 2018, Nucleic acids research,
G L Igloi, and F Cramer
June 1973, Biochimica et biophysica acta,
Copied contents to your clipboard!