Effect of norepinephrine on diaphragm contractility and blood flow. 1990

G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
Pulmonary Division, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109.

Recent studies have shown that diaphragm fatigue can be reversed by mechanical augmentation of phrenic arterial flow. The purpose of the present experiment was to determine whether it was possible to pharmacologically augment diaphragm blood flow and reverse fatigue by the administration of norepinephrine. Four groups of studies were performed, all employing our previously described in situ isometric canine diaphragm strip preparation (Supinski et al., J. Appl. Physiol. 60: 1789-1796, 1986). Group I studies examined the effects of norepinephrine on the contractility of the nonfatigued diaphragm in normotensive dogs, group II studies examined the effects of this drug on the contractility of the fatigued diaphragm in normotensive animals, and group III studies examined the effect of this drug on the contractility of the fatigued diaphragm in hypotensive animals. Group IV studies examined the effect of norepinephrine in normotensive animals in which the phrenic artery was cannulated and pump perfused at constant flow. Fatigue was induced in group II, III, and IV studies by rhythmically stimulating the diaphragm via intramuscular electrodes. Norepinephrine had no effect on the contractility of the nonfatigued diaphragm (group I). In normotensive (group II) and hypotensive animals (group III), norepinephrine elicited dramatic increases in arterial blood pressure and phrenic arterial flow and produced a significant upshift in the force-frequency curve of the fatigued diaphragm. However, when phrenic flow was held constant (group IV experiments), norepinephrine failed to augment the contractility of the fatigued diaphragm. These results indicate that 1) norepinephrine can increase phrenic blood flow and augment the contractility of the fatigued diaphragm in both normotensive and hypotensive conditions and 2) this effect of norepinephrine to partially reverse fatigue is secondary to its action to augment diaphragmatic blood flow.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
December 1988, The American review of respiratory disease,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
October 1956, Surgery, gynecology & obstetrics,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
January 1985, General pharmacology,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
February 1993, Journal of the American College of Cardiology,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
March 1995, Microvascular research,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
January 2003, Heart & lung : the journal of critical care,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
May 1992, The American review of respiratory disease,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
February 1983, Deutsche medizinische Wochenschrift (1946),
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
March 1990, Chest,
G S Supinski, and A F DiMarco, and J Gonzalez, and M D Altose
April 1983, The American journal of physiology,
Copied contents to your clipboard!