N-acetylserotonin reduces lipopolysaccharide-induced lipid peroxidation in vitro more effectively than melatonin. 2010

Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
Department of Endocrine Disorders and Bone Metabolism, Medical University of Lodz, Poland.

OBJECTIVE Bacterial lipopolysaccharide (LPS) causes lipid peroxidation (LPO). We have found that LPS induces LPO in vitro, in tissue homogenates in a concentration-dependent manner, the concentration of 400 µg/ml demonstrating the most efficient lipid damaging effect . Both melatonin and its precursor, N-acetylserotonin, must possess antioxidant activities, both in vivo or in vitro, however, following some claims, N-acetylserotonin is a more effective extra- and intracellular antioxidant than melatonin. The aim of our study was to compare the effects of melatonin and N-acetylserotonin on the LPS-induced LPO in vitro. METHODS Malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA) concentrations were measured as the indices of induced membrane peroxidative damage in brain, liver and kidney homogenates. Both melatonin and N-acetylserotonin were used at increasing concentrations, starting from 0.01-5 mM, together with LPS at one concentration level of 400 µg/ml. RESULTS In all the examined tissues, LPS stimulated LPO, while both melatonin and N-acetylserotonin decreased LPS-stimulated LPO. Furthermore, the capacity of N-acetylserotonin reducing LPO was higher than that of melatonin. CONCLUSIONS The results of the reported study clearly indicate that N-acetylserotonin is a much stronger antioxidant in vitro than melatonin in terms of reducing oxidative damage to lipid membranes. However, it remains still unclear how the features relate to in vivo circumstances.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
December 1995, Free radical biology & medicine,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
April 2008, Cell biochemistry and function,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
February 2007, Neuroscience letters,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
November 2003, Journal of cellular biochemistry,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
September 1999, Metabolic brain disease,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
January 2014, Frontiers in physiology,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
December 2007, Annals of the New York Academy of Sciences,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
October 2001, European journal of pharmacology,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
April 1999, FEBS letters,
Michal Stuss, and Joanna A Wiktorska, and Ewa Sewerynek
September 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!