Independent component analysis for auditory evoked potentials and cochlear implant artifact estimation. 2011

Norma Castañeda-Villa, and Christopher J James
Universidad Autonoma Metropolitana-Izt, Mexico DF 09340, Mexico. ncv@soton.ac.uk

Auditory evoked potential (AEP) recordings have been analyzed through independent component analysis (ICA) in the literature; however, the performance varies depending on the ICA algorithms used. There are very few studies that concentrate on the optimum parameter selection for estimating the AEP components reliably, while also recovering the specific artifact generated with the normal functioning of a cochlear implant (CI). The objective of this research is to determine which ICA algorithm, high-order statistics (HOS)-based or second-order statistic (SOS)-based, is more plausible to remove this artifact and estimate the AEP. The optimal parameters of three such ICA algorithms for estimating the components from a database of recordings were determined, and then the estimates for the AEP and CI artifact were compared using each method. All the algorithms estimate the CI artifact reasonably well, although only one SOS algorithm is better positioned to estimate the AEP; this is primarily because it uses the temporal structure of this signal as part of the ICA process.

UI MeSH Term Description Entries
D003054 Cochlear Implants Electronic hearing devices typically used for patients with normal outer and middle ear function, but defective inner ear function. In the COCHLEA, the hair cells (HAIR CELLS, VESTIBULAR) may be absent or damaged but there are residual nerve fibers. The device electrically stimulates the COCHLEAR NERVE to create sound sensation. Auditory Prosthesis,Cochlear Prosthesis,Implants, Cochlear,Auditory Prostheses,Cochlear Implant,Cochlear Prostheses,Implant, Cochlear,Prostheses, Auditory,Prostheses, Cochlear,Prosthesis, Auditory,Prosthesis, Cochlear
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D012815 Signal Processing, Computer-Assisted Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity. Digital Signal Processing,Signal Interpretation, Computer-Assisted,Signal Processing, Digital,Computer-Assisted Signal Interpretation,Computer-Assisted Signal Interpretations,Computer-Assisted Signal Processing,Interpretation, Computer-Assisted Signal,Interpretations, Computer-Assisted Signal,Signal Interpretation, Computer Assisted,Signal Interpretations, Computer-Assisted,Signal Processing, Computer Assisted
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D016477 Artifacts Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis. Artefacts,Artefact,Artifact

Related Publications

Norma Castañeda-Villa, and Christopher J James
November 2011, Psychophysiology,
Norma Castañeda-Villa, and Christopher J James
August 2006, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Norma Castañeda-Villa, and Christopher J James
November 2012, International journal of pediatric otorhinolaryngology,
Norma Castañeda-Villa, and Christopher J James
August 2013, Hearing research,
Norma Castañeda-Villa, and Christopher J James
July 2013, Clinical linguistics & phonetics,
Norma Castañeda-Villa, and Christopher J James
April 2014, Brazilian journal of otorhinolaryngology,
Norma Castañeda-Villa, and Christopher J James
October 1987, Archives of otolaryngology--head & neck surgery,
Norma Castañeda-Villa, and Christopher J James
October 2002, International journal of audiology,
Norma Castañeda-Villa, and Christopher J James
January 1991, Acta oto-rhino-laryngologica Belgica,
Copied contents to your clipboard!