Ginkgo biloba extract enhances glucose tolerance in hyperinsulinism-induced hepatic cells. 2011

Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China. zhoulei@mail.hzau.edu.cn

Ginkgo biloba, an herbal medication, is capable of lowering glucose, fat, and lipid peroxide in diabetic patients. In the current study, we tested the hypothesis that Ginkgo biloba extract (GBE) prevented hyperinsulinism-induced glucose intolerance in hepatocytes. We investigated the effects of GBE on glucose consumption, glucokinase activity, and mRNA levels of key genes in glucose metabolism and the insulin signaling pathway. To better show its efficacy, we included a control group that was treated with rosiglitazone, a type of thiazolidinedione (TZD). The data indicated that GBE repressed glucose uptake under normal conditions, while it dramatically improved glucose tolerance under insulin-resistant conditions. Furthermore, after analyzing gene expression, we suggest that GBE chiefly exerts its effects by stimulating IRS-2 transcription. It should be noted that, unlike rosiglitazone, GBE did not stimulate excessive glucose uptake as it improved glucose tolerance. It is said that GBE treatment could avoid drug-induced obesity. Our data suggest that GBE has the potential to prevent insulin resistance and is a promising anti-diabetic drug.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005941 Glucokinase A group of enzymes that catalyzes the conversion of ATP and D-glucose to ADP and D-glucose 6-phosphate. They are found in invertebrates and microorganisms, and are highly specific for glucose. (Enzyme Nomenclature, 1992) EC 2.7.1.2.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005952 Glucose-6-Phosphatase An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9. Glucosephosphatase,Glucose 6-Phosphatase,Glucose-6-Phosphate Phosphohydrolase,Glucose 6 Phosphatase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000077154 Rosiglitazone A thiazolidinedione that functions as a selective agonist for PPAR GAMMA. It improves INSULIN SENSITIVITY in adipose tissue, skeletal muscle, and the liver of patients with TYPE 2 DIABETES MELLITUS. 5-((4-(2-Methyl-2-(pyridinylamino)ethoxy)phenyl)methyl)-2,4-thiazolidinedione-2-butenedioate,Avandia,BRL 49653,BRL-49653,BRL49653,Rosiglitazone Maleate
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
April 2009, Phytotherapy research : PTR,
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
September 2008, Acta pharmacologica Sinica,
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
January 2007, The American journal of Chinese medicine,
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
January 1997, Acta physiologica Hungarica,
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
September 1986, Presse medicale (Paris, France : 1983),
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
April 2008, Zhonghua nan ke xue = National journal of andrology,
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
August 2015, Cellular and molecular neurobiology,
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
May 2009, Journal of applied physiology (Bethesda, Md. : 1985),
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
June 2014, Toxicological sciences : an official journal of the Society of Toxicology,
Lei Zhou, and Qingjie Meng, and Tao Qian, and Zaiqing Yang
May 2018, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Copied contents to your clipboard!