| D008407 |
Mast Cells |
Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. |
Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils |
|
| D009928 |
Organ Specificity |
Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. |
Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities |
|
| D010447 |
Peptide Hydrolases |
Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. |
Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide |
|
| D002469 |
Cell Separation |
Techniques for separating distinct populations of cells. |
Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell |
|
| D002470 |
Cell Survival |
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. |
Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell |
|
| D005434 |
Flow Cytometry |
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. |
Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000943 |
Antigens, Differentiation |
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. |
Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation |
|
| D018189 |
Immunomagnetic Separation |
A cell-separation technique where magnetizable microspheres or beads are first coated with monoclonal antibody, allowed to search and bind to target cells, and are then selectively removed when passed through a magnetic field. Among other applications, the technique is commonly used to remove tumor cells from the marrow (BONE MARROW PURGING) of patients who are to undergo autologous bone marrow transplantation. |
Immunomagnetic Bead Technique,Immunomagnetic Purging,Immunomagnetic Cell Separation,Bead Technique, Immunomagnetic,Bead Techniques, Immunomagnetic,Cell Separation, Immunomagnetic,Cell Separations, Immunomagnetic,Immunomagnetic Bead Techniques,Immunomagnetic Cell Separations,Immunomagnetic Purgings,Immunomagnetic Separations,Purging, Immunomagnetic,Purgings, Immunomagnetic,Separation, Immunomagnetic,Separation, Immunomagnetic Cell,Separations, Immunomagnetic,Separations, Immunomagnetic Cell |
|
| D018929 |
Cell Culture Techniques |
Methods for maintaining or growing CELLS in vitro. |
Cell Culture,Cell Culture Technique,Cell Cultures,Culture Technique, Cell,Culture Techniques, Cell |
|