Characterization of the cDNA coding for mouse plasminogen and localization of the gene to mouse chromosome 17. 1990

S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
Children's Hospital Research Foundation, University of Cincinnati, Ohio 45229.

A full-length cDNA coding for mouse plasminogen has been isolated and characterized. The cDNA is 2720 bp in length (excluding the poly(A) tail) and contains a 24-bp 5' noncoding region, an open reading frame of 2436 bp, and a 3' noncoding region of 257 bp. The open reading frame codes for 812 amino acids and includes a signal peptide that is likely 19 amino acids in length and the mature protein of 793 amino acids. The calculated Mr of mouse plasminogen is 88,706 excluding carbohydrate. There are two potential N-linked carbohydrate addition sites; one of which is glycosylated in human, bovine, and porcine plasminogens. Mouse plasminogen was found to contain two additional amino acids compared to the human protein. In addition, mouse and human plasminogens were found to be 79 and 76% identical at the protein and DNA levels, respectively. Analysis of the segregation of two allelic forms, Plgb and Plgd, of plasminogen DNA in three sets of recombinant inbred strains has allowed the localization of the mouse plasminogen gene to the proximal end of mouse chromosome 17 within the t complex and close to the locus D17Rp17. The Plg gene is deleted in the semidominant deletion mutant, hair-pintail (Thp).

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010958 Plasminogen Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent. Profibrinolysin,Glu-Plasminogen,Glutamic Acid 1-Plasminogen,Glutamyl Plasminogen,1-Plasminogen, Glutamic Acid,Glu Plasminogen,Glutamic Acid 1 Plasminogen,Plasminogen, Glutamyl
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
September 1990, DNA and cell biology,
S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
January 1989, Cytogenetics and cell genetics,
S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
December 1995, Journal of immunology (Baltimore, Md. : 1950),
S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
January 1990, Immunogenetics,
S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
January 1997, Mammalian genome : official journal of the International Mammalian Genome Society,
S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
August 1988, Blood,
S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
November 1990, FEBS letters,
S J Degen, and S M Bell, and L A Schaefer, and R W Elliott
March 1997, Mammalian genome : official journal of the International Mammalian Genome Society,
Copied contents to your clipboard!