[Condensed DNA particles formed in PCR with plasmid DNA: electron microscopy study]. 2010

V N Danilevich, and V A Kadykov, and E V Grishin

An electron microscopy study of large-sized DNA microparticles produced in PCR with different gene-specific primers and plasmid DNAs is described. DNA microspheres of two distinct types were revealed in the all studied samples, namely smooth moderately electron-dense microspheres, and highly electron-dense particles with large thorns and offshoots. Singular microspheres have the average diameter of 1 mum, and their aggregates were up to 3 mum in dimensions. In addition, rare so-called three-dimensional net-like structures with various size (up to several micrometers) were observed. They consisted of different amounts of DNA nanoparticles, having the special compact topology. In some studied samples the discs (nanodiscs) of several dozens nm in thickness and up to 3 mum in diameter were revealed. It was shown that the quantity of net-like structures and nanodiscs sharply increases in asymmetric PCR. We also observed DNA nanowires of different length and thickness, nanodots, nanoparticles in the form of shits of paper as well as electron-dense spherical nanoparticles of big size. Aqueous suspensions of DNA microparticles were heated at 94 degrees C for 5 min and analyzed by electron microscopy. It was shown that microspheres in heated suspensions underwent partial melting; they lost a part of DNA, therefore details of their structure (ultrastructure) can be recognized. At the some time numerous tangles of nanowires appeared. Molecular mechanisms of the DNA micro- and nanoparticles formation are discussed.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle

Related Publications

V N Danilevich, and V A Kadykov, and E V Grishin
January 2013, Doklady. Biochemistry and biophysics,
V N Danilevich, and V A Kadykov, and E V Grishin
December 2014, Journal of biomolecular structure & dynamics,
V N Danilevich, and V A Kadykov, and E V Grishin
September 1976, Journal of molecular biology,
V N Danilevich, and V A Kadykov, and E V Grishin
August 1979, Indian journal of biochemistry & biophysics,
V N Danilevich, and V A Kadykov, and E V Grishin
January 2011, Mikrobiologiia,
V N Danilevich, and V A Kadykov, and E V Grishin
June 1998, Journal of pharmaceutical sciences,
V N Danilevich, and V A Kadykov, and E V Grishin
December 1989, Gene,
V N Danilevich, and V A Kadykov, and E V Grishin
September 1978, Biken journal,
Copied contents to your clipboard!