Effect of α4β7 blockade on intestinal lymphocyte subsets and lymphoid tissue development. 2010

Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA.

BACKGROUND Blockade of the integrin α4β7 has promise as a therapy for inflammatory bowel disease. α4β7 plays diverse roles in the intestinal immune system, including lymphocyte homing and lymphoid tissue formation; however, the effects of α4β7 blockade on these processes during inflammation and their relationship to the efficacy of α4β7 blockade and its potential untoward effects are largely unknown. METHODS α4β7 function was inhibited by genetic manipulation or antibody blockade. The effects of these manipulations on lymphoid tissues and the presence of lymphocyte subpopulations in the murine small intestine and colon were evaluated in the unchallenged state, during the acute injury dextran sodium sulfate model, and during the splenocyte transfer chronic inflammation model. RESULTS α4β7 inhibition resulted in a decrease in the B-lymphocyte population in the diffuse lamina propria and a decrease in the number of lymphoid aggregates in the uninflamed intestine and in the acute injury model. α4β7 blockade did not reduce the Foxp3- T-lymphocyte population but did decrease the Foxp3+ T-lymphocyte population located selectively within the lymphoid aggregates in the uninflamed intestine and in the acute injury model. In contrast, α4β7 blockade reduced the intestinal T-lymphocyte population and decreased the production of inflammatory cytokines in the T-lymphocyte mediated chronic inflammation model. CONCLUSIONS These findings demonstrate differential use of α4β7 by B-lymphocytes, Foxp3- T-lymphocytes, and Foxp3+ T-lymphocytes to home to the gut, and suggest that α4β7 blockade may serve as a targeted therapy that selectively inhibits the accumulation of pathogenic T-lymphocyte populations in the chronically inflamed intestine.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008221 Lymphoid Tissue Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS. Lymphatic Tissue,Lymphatic Tissues,Lymphoid Tissues,Tissue, Lymphatic,Tissue, Lymphoid,Tissues, Lymphatic,Tissues, Lymphoid
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D003092 Colitis Inflammation of the COLON section of the large intestine (INTESTINE, LARGE), usually with symptoms such as DIARRHEA (often with blood and mucus), ABDOMINAL PAIN, and FEVER. Colitides
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
January 2018, Journal of immunology (Baltimore, Md. : 1950),
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
May 1984, Clinical and experimental immunology,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
January 2007, Developmental and comparative immunology,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
April 1970, Surgery,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
July 1990, Immunology,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
November 1984, Archives of pathology & laboratory medicine,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
July 2000, Journal of immunological methods,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
July 1983, American journal of clinical pathology,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
January 1991, Comparative biochemistry and physiology. A, Comparative physiology,
Caihong Wang, and Elyse K Hanly, and Leroy W Wheeler, and Manreet Kaur, and Keely G McDonald, and Rodney D Newberry
January 1998, International ophthalmology,
Copied contents to your clipboard!