Nanodroplet microarrays for high-throughput enzyme screening. 2010

Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
DSO National Laboratories, Defence Medical and Environmental Research Institute, Singapore, Singapore.

We describe here a method for the continuous assessment of enzymatic activity using microarrays. By uniformly coating fluorogenic substrates on slides, we generated surfaces capable of detecting enzymatic activity. The enzymes were deposited on the arrays in segregated droplets using standard microarrayers. Surfaces were developed for assessing the activities of both proteases and phosphatases, hence capitalizing on microarray technology to perform miniaturized high-throughput screens for these, as well as potentially any other, classes of enzyme. This offers an unprecedented ability for performing solution-phase enzymatic assays in nanoliter volumes on microarrays, in contrast to microliter volumes typically required in microplate-based assays, thereby reducing the amounts of reagent(s) required by anywhere from a hundred to a thousand-fold. This new approach thus provides a potentially more cost-effective, label-free enzyme screening technique. A single slide is able to accommodate several thousand assays, facilitating the assessment of both dose and time-dependent inhibition parameters in a single run.

UI MeSH Term Description Entries
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D011327 Printing Process of reproducing words or images on a physical media.
D002364 Caseins A mixture of related phosphoproteins occurring in milk and cheese. The group is characterized as one of the most nutritive milk proteins, containing all of the common amino acids and rich in the essential ones. alpha-Casein,gamma-Casein,AD beta-Casein,Acetylated, Dephosphorylated beta-Casein,Casein,Casein A,K-Casein,Sodium Caseinate,alpha(S1)-Casein,alpha(S1)-Casein A,alpha(S1)-Casein B,alpha(S1)-Casein C,alpha(S2)-Casein,alpha-Caseins,beta-Casein,beta-Caseins,epsilon-Casein,gamma-Caseins,kappa-Casein,kappa-Caseins,AD beta Casein,Caseinate, Sodium,K Casein,alpha Casein,alpha Caseins,beta Casein,beta Caseins,beta-Casein Acetylated, Dephosphorylated,beta-Casein, AD,epsilon Casein,gamma Casein,gamma Caseins,kappa Casein,kappa Caseins
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D046228 Microarray Analysis The simultaneous analysis, on a microchip, of multiple samples or targets arranged in an array format. Microarray Analytical Devices,Microarray Microchips,Nanoarray Analytical Devices,Analysis, Microarray,Analytical Device, Microarray,Analytical Device, Nanoarray,Analytical Devices, Microarray,Analytical Devices, Nanoarray,Device, Microarray Analytical,Device, Nanoarray Analytical,Devices, Microarray Analytical,Devices, Nanoarray Analytical,Microarray Analytical Device,Microarray Microchip,Microchip, Microarray,Microchips, Microarray,Nanoarray Analytical Device
D054852 Small Molecule Libraries Large collections of small molecules (molecular weight about 600 or less), of similar or diverse nature which are used for high-throughput screening analysis of the gene function, protein interaction, cellular processing, biochemical pathways, or other chemical interactions. It includes virtual libraries. Chemical Libraries,Molecular Libraries, Small,Libraries, Chemical,Libraries, Small Molecular,Libraries, Small Molecule,Molecule Libraries, Small,Small Molecular Libraries
D057075 Enzyme Assays Methods used to measure the relative activity of a specific enzyme or its concentration in solution. Typically an enzyme substrate is added to a buffer solution containing enzyme and the rate of conversion of substrate to product is measured under controlled conditions. Many classical enzymatic assay methods involve the use of synthetic colorimetric substrates and measuring the reaction rates using a spectrophotometer. Enzymatic Assays,Indirect Enzymatic Assays,Indirect Enzyme Assays,Assay, Enzymatic,Assay, Enzyme,Assay, Indirect Enzymatic,Assay, Indirect Enzyme,Assays, Enzymatic,Assays, Enzyme,Assays, Indirect Enzymatic,Assays, Indirect Enzyme,Enzymatic Assay,Enzymatic Assay, Indirect,Enzymatic Assays, Indirect,Enzyme Assay,Enzyme Assay, Indirect,Enzyme Assays, Indirect,Indirect Enzymatic Assay,Indirect Enzyme Assay

Related Publications

Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
November 2016, Lab on a chip,
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
August 2004, Current opinion in biotechnology,
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
November 2011, Lab on a chip,
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
March 2005, Analytical biochemistry,
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
January 2009, Methods in molecular biology (Clifton, N.J.),
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
December 2017, Current opinion in biotechnology,
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
May 2013, Journal of proteome research,
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
July 2016, Scientific reports,
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
January 2010, Methods in molecular biology (Clifton, N.J.),
Kang L D Aw, and Shao Q Yao, and Mahesh Uttamchandani
August 2000, Current opinion in biotechnology,
Copied contents to your clipboard!