Role of activity in the selection of new electrical synapses between adult Helisoma neurons. 1990

R C Berdan, and A G Bulloch
Department of Physiology, University of Alberta, Edmonton, Canada.

Our aim was to determine whether neural activity in the form of sodium-dependent action potentials play a role in the formation, maintenance and specificity of electrical synapses between regenerating neurons. We axotomized buccal neurons of the mollusc, Helisoma trivolvis, and placed ganglia into organ culture in the absence or presence of tetrodotoxin (TTX), a specific sodium channel blocker. Electrical coupling was measured using intracellular microelectrodes positioned within the soma of identified neurons. Neurite outgrowth was assessed by epifluorescence microscopy after filling neurons by iontophoresis with Lucifer yellow. Previous studies found that two days after axotomy transient electrical synapses form between heterologous neurons (e.g. buccal neurons 4 and 5). Five days after axotomy these transient connections disappeared and a new electrical synapse was stabilized between the paired buccal neurons 5. To determine whether blocking neural activity with TTX affected the specificity and formation of new electrical synapses, we examined electrical coupling between the heterologous neurons 4 and 5 two days after axotomy, and the paired buccal neurons 5 five days after axotomy. Our electrophysiological recordings indicated that different neurons in the buccal ganglion varied in their sensitivity to TTX (i.e. sensitivity of buccal neurons 19 greater than 5 greater than 4), but spontaneous activity was abolished in all 3 neurons by 2 x 10(-5) M TTX. Furthermore, the inhibitory effects of TTX occurred within seconds of superfusion and persisted for at least 6 days. Inhibition of activity by TTX could be reversed after superfusion with normal saline. Neurite outgrowth from axotomized neurons was not appreciably altered in the presence of TTX. Furthermore, no differences in the incidence of electrical coupling or the coupling resistance were detected between neurons 4 and 5 two days after axotomy and organ culture in the presence of TTX. However, electrical coupling between the symmetrically paired neurons 5 was elevated in the presence of TTX after 5 days. We conclude from these results that neural activity in the form of sodium-dependent action potentials does not play an important role in the formation or breaking of transient electrical synapses during neuronal regeneration in the mollusc Helisoma trivolvis.

UI MeSH Term Description Entries
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D002610 Cheek The part of the face that is below the eye and to the side of the nose and mouth. Bucca,Buccas,Cheeks
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

R C Berdan, and A G Bulloch
August 1982, Journal of neurophysiology,
R C Berdan, and A G Bulloch
December 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R C Berdan, and A G Bulloch
January 2000, Nature neuroscience,
R C Berdan, and A G Bulloch
July 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R C Berdan, and A G Bulloch
October 1990, Brain research. Developmental brain research,
R C Berdan, and A G Bulloch
July 2010, The Journal of physiology,
R C Berdan, and A G Bulloch
September 1985, Journal of neurobiology,
R C Berdan, and A G Bulloch
January 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!