Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones River, Atacama Desert, northern Chile. 2011

V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
Microbiology Department, Biologic Science Faculty, University of Concepción, P.O. Box 160-C, Correo 3, Concepción, Chile. vcampos@udec.cl

The arsenic biogeochemical cycle is greatly dependent on microbial transformations that affect both the distribution and mobility of arsenic species in the environment. In this study, a microbial biofilm from volcanic rocks was characterized on the basis of its bacterial composition and ability to mobilize arsenic under circumneutral pH. Biofilm microstructure was analyzed by scanning electron microscopy (SEM)-energy-dispersive spectroscopy (EDS). Strains were isolated from biofilms and identified by 16S rDNA sequences analysis. Arsenic oxidation and reduction capacity was assayed with high-performance liquid chromatography coupled to gaseous formation performing the detection by atomic absortion in a quartz bucket (HPLC/HG/QAAS), and polymerase chain reaction was used to detect aox and ars genes. Bacterial communities associated with volcanic rocks were studied by denaturing gradient gel electrophoresis (DGGE). The SEM-EDS studies showed the presence of biofilm after 45 days of incubation. The relative closest GenBank matches of the DNA sequences, of isolated arsenic-resistant strains, showed the existence of four different genus: Burkholderia, Pseudomonas, Erwinia, and Pantoea. Four arsenite-resistant strains were isolates, and only three strains were able to oxidize >97% of the As(III) present (500 uM). All arsenate-resistant isolates were able to reduce between 69 and 86% of total As(V) (1000 uM). Analysis of 16S rDNA sequences obtained by DGGE showed the presence of four bacterial groups (∝-proteobacteria, γ-proteobacteria, Firmicutes, and Actinobacteria). Experiments demonstrate that epilithic bacterial communities play a key role in the mobilization of arsenic and metalloids speciation.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002677 Chile A country in southern South America, bordering the South Pacific Ocean, between Argentina and Peru.
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004885 Erwinia A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms are associated with plants as pathogens, saprophytes, or as constituents of the epiphytic flora.
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001149 Arsenates Inorganic or organic salts and esters of arsenic acid.
D001151 Arsenic A shiny gray element with atomic symbol As, atomic number 33, and atomic weight 75. It occurs throughout the universe, mostly in the form of metallic arsenides. Most forms are toxic. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), arsenic and certain arsenic compounds have been listed as known carcinogens. (From Merck Index, 11th ed) Arsenic-75,Arsenic 75

Related Publications

V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
September 2009, Journal of basic microbiology,
V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
November 2009, Bulletin of environmental contamination and toxicology,
V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
May 2009, Bulletin of environmental contamination and toxicology,
V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
January 2020, PeerJ,
V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
December 1966, Journal of phycology,
V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
March 2015, Zootaxa,
V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
February 2021, Microorganisms,
V L Campos, and C León, and M A Mondaca, and J Yañez, and C Zaror
December 2000, Journal of thermal biology,
Copied contents to your clipboard!