Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. 2011

Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
Ordway Research Institute, Albany, New York 12208, USA. pdavis@ordwayresearch.org

Plasma membrane integrin αvβ3 is a cell surface receptor for thyroid hormone at which nongenomic actions are initiated. L-thyroxine (T₄) and 3,3',5-triiodo-L-thyronine (T₃) promote angiogenesis and tumor cell proliferation via the receptor. Tetraiodothyroacetic acid (tetrac), a deaminated T₄ derivative, blocks the nongenomic proliferative and proangiogenic actions of T₄ and T₃. Acting at the integrin independently of T₄ and T₃, tetrac and a novel nanoparticulate formulation of tetrac that acts exclusively at the cell surface have oncologically desirable antiproliferative actions on multiple tumor cell survival pathway genes. These agents also block the angiogenic activity of vascular growth factors. Volume and vascular support of xenografts of human pancreatic, kidney, lung, and breast cancers are downregulated by tetrac formulations. The integrin αvβ3 receptor site for thyroid hormone selectively regulates signal transduction pathways and distinguishes between unmodified tetrac and the nanoparticulate formulation. The receptor also mediates nongenomic thyroid hormone effects on plasma membrane ion transporters and on intracellular protein trafficking.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4
D014284 Triiodothyronine A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. Liothyronine,T3 Thyroid Hormone,3,3',5-Triiodothyronine,Cytomel,Liothyronine Sodium,Thyroid Hormone, T3
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle
D020533 Angiogenesis Inhibitors Agents and endogenous substances that antagonize or inhibit the development of new blood vessels. Angiogenesis Factor Inhibitor,Angiogenesis Inhibitor,Angiogenetic Antagonist,Angiogenetic Inhibitor,Angiogenic Antagonist,Angiogenic Antagonists,Angiogenic Inhibitor,Angiostatic Agent,Angiostatic Agents,Anti-Angiogenetic Agent,Anti-Angiogenic Drug,Anti-Angiogenic Drugs,Antiangiogenic Agent,Neovascularization Inhibitor,Neovascularization Inhibitors,Angiogenesis Factor Inhibitors,Angiogenetic Antagonists,Angiogenetic Inhibitors,Angiogenic Inhibitors,Antagonists, Angiogenic,Anti-Angiogenesis Effect,Anti-Angiogenesis Effects,Anti-Angiogenetic Agents,Antiangiogenesis Effect,Antiangiogenesis Effects,Antiangiogenic Agents,Inhibitors, Angiogenesis,Inhibitors, Angiogenetic,Inhibitors, Angiogenic,Inhibitors, Neovascularization,Agent, Angiostatic,Agent, Anti-Angiogenetic,Agent, Antiangiogenic,Agents, Angiostatic,Agents, Anti-Angiogenetic,Agents, Antiangiogenic,Antagonist, Angiogenetic,Antagonist, Angiogenic,Antagonists, Angiogenetic,Anti Angiogenesis Effect,Anti Angiogenesis Effects,Anti Angiogenetic Agent,Anti Angiogenetic Agents,Anti Angiogenic Drug,Anti Angiogenic Drugs,Drug, Anti-Angiogenic,Drugs, Anti-Angiogenic,Effect, Anti-Angiogenesis,Effect, Antiangiogenesis,Effects, Anti-Angiogenesis,Effects, Antiangiogenesis,Factor Inhibitor, Angiogenesis,Factor Inhibitors, Angiogenesis,Inhibitor, Angiogenesis,Inhibitor, Angiogenesis Factor,Inhibitor, Angiogenetic,Inhibitor, Angiogenic,Inhibitor, Neovascularization,Inhibitors, Angiogenesis Factor

Related Publications

Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
May 1998, Journal of clinical pharmacology,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
January 1978, Transactions of the Association of American Physicians,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
March 1979, Artery,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
March 1989, The American journal of medicine,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
March 1989, Minerva ginecologica,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
December 2009, American journal of physiology. Endocrinology and metabolism,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
October 1984, The American journal of medicine,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
January 1998, Journal of intravenous nursing : the official publication of the Intravenous Nurses Society,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
May 1996, Postgraduate medicine,
Paul J Davis, and Faith B Davis, and Shaker A Mousa, and Mary K Luidens, and Hung-Yun Lin
January 1996, Blood pressure. Supplement,
Copied contents to your clipboard!