The vasopressin V1b receptor modulates plasma corticosterone responses to dehydration-induced stress. 2011

E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
School of Clinical Sciences, Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.

Vasopressin V1b receptor knockout (V1b⁻/⁻) mice were used to investigate a putative role for the V1b receptor (V1bR) in fluid regulation and in the hypothalamic-neurohypophysial system (HNS) and hypothalamic-pituitary-adrenal (HPA) axis responses to osmotic stress induced by water deprivation (WD). Male wild-type and V1b⁻/⁻ mice were housed in metabolic cages to allow determination of water intake and urine volume and osmolality. When provided with food and water ad lib., spontaneous urine volume and urine osmolality did not differ between genotypes. Similarly, WD for 24 h caused comparable decreases in urine volume and increases in urine osmolality irrespective of genotype. WD resulted in an increase in plasma corticosterone concentration in wild-type animals; however, this WD-induced increase in plasma corticosterone was significantly attenuated in V1b⁻/⁻ mice. Comparable increases in neuronal activation, indicated by increased c-fos mRNA expression, and in vasopressin mRNA expression occurred in both the supraoptic nucleus and paraventricular nucleus (PVN) of wild-type and V1b⁻/⁻ mice following WD; however, the WD-induced decrease in corticotrophin-releasing hormone mRNA expression seen in the PVN of wild-type mice was not observed in the PVN of V1b⁻/⁻ mice. These data suggest that, although the vasopressin V1bR is not required for normal HNS function, it is necessary for a full HPA-axis response to the osmotic stress of WD.

UI MeSH Term Description Entries
D008297 Male Males
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003681 Dehydration The condition that results from excessive loss of water from a living organism. Water Stress,Stress, Water
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D017483 Receptors, Vasopressin Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors. Antidiuretic Hormone Receptors,Receptors, V1,Receptors, V2,V1 Receptors,V2 Receptors,Vasopressin Receptors,8-Arg-Vasopressin Receptor,Antidiuretic Hormone Receptor,Antidiuretic Hormone Receptor 1a,Antidiuretic Hormone Receptor 1b,Arginine Vasopressin Receptor,Argipressin Receptor,Argipressin Receptors,Receptor, Arginine(8)-Vasopressin,Renal-Type Arginine Vasopressin Receptor,V1 Receptor,V1a Vasopressin Receptor,V1b Vasopressin Receptor,V2 Receptor,Vascular-Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor,Vasopressin Receptor 1,Vasopressin Type 1A Receptor,Vasopressin V1a Receptor,Vasopressin V1b Receptor,Vasopressin V2 Receptor,Vasopressin V3 Receptor,8 Arg Vasopressin Receptor,Hormone Receptor, Antidiuretic,Hormone Receptors, Antidiuretic,Receptor, Antidiuretic Hormone,Receptor, Arginine Vasopressin,Receptor, Argipressin,Receptor, V1,Receptor, V2,Receptor, Vasopressin,Receptor, Vasopressin V1b,Receptor, Vasopressin V3,Receptors, Antidiuretic Hormone,Receptors, Argipressin,Renal Type Arginine Vasopressin Receptor,V1b Receptor, Vasopressin,Vascular Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor, V1b
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
July 2006, American journal of physiology. Endocrinology and metabolism,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
April 2015, Experimental physiology,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
January 2021, JCI insight,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
December 1995, Journal of neuroendocrinology,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
June 2003, Current drug targets. CNS and neurological disorders,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
March 2009, Molecular pharmacology,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
July 1998, Endocrinology,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
July 2021, The international journal of neuropsychopharmacology,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
February 2007, The Journal of endocrinology,
E M Roberts, and G R Pope, and M J F Newson, and S J Lolait, and A-M O'Carroll
June 2004, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!