Muscarinic cholinergic receptor modulation of beta-adrenergic receptor affinity for catecholamines. 1978

A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch

The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008688 Methacholine Compounds A group of compounds that are derivatives of beta-methylacetylcholine (methacholine). Compounds, Methacholine
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins

Related Publications

A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
May 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
August 1984, The Journal of pharmacology and experimental therapeutics,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
January 1986, Biochemical Society symposium,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
May 1989, Biochemistry,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
November 1996, Journal of cardiovascular electrophysiology,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
February 1994, Nuclear medicine and biology,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
August 1999, The Journal of pharmacology and experimental therapeutics,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
January 1988, Advances in experimental medicine and biology,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
April 1990, The Journal of biological chemistry,
A M Watanabe, and M M McConnaughey, and R A Strawbridge, and J W Fleming, and L R Jones, and H R Besch
January 1984, Journal of neuroscience research,
Copied contents to your clipboard!