Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity similar to that of choleragen. 1978

J Moss, and S H Richardson

Highly purified, polymyxin-released, low molecular weight Escherichia coli heat-labile enterotoxin (LT) catalyzed the hydrolysis of NAD to ADP-ribose and nicotinamide. This NAD glycohydrolase activity was stimulated by dithiothreitol and was independent of cellular components. Nicotinamide formation was enhanced by arginine methyl ester > d-arginine congruent with l-arginine congruent with guanidine. A 20-fold increase in activity was noted with arginine methyl ester, and maximal activity again required dithiothreitol. When the reaction was initiated with toxin, a delay was observed before a constant rate was established. The reaction products found after incubation of [adenine-U-(14)C]NAD and l-[(3)H]arginine or unlabeled arginine methyl ester with the enterotoxin had mobilities on thin-layer chromatograms similar to the reaction products obtained after incubation of choleragen with these substrates and are consistent with the formation of ADP-ribose-l-arginine and ADP-ribose-l-arginine methyl ester, respectively. Both toxins, which catalyze the NAD-dependent activation of adenylate cyclase, thus appear to possess NAD glycohydrolase and ADP-ribosyltransferase activities. Although the activities of both toxins are dependent on dithiothreitol, Escherichia coli enterotoxin exhibited optimal activity in Tris (Cl(-)) (pH 7.5) and was inhibited by high concentrations of potassium phosphate (pH 7.0) or low pH (sodium acetate, pH 6.2). It appears that the optimal assay conditions as well as the kinetic constants for the reactants differ from those previously noted with choleragen. It is probable therefore that although the two toxins catalyze similar reactions, they differ in primary structure. The presence of transferase and glycohydrolase activities in structurally distinct toxins that activate adenylate cyclase strengthens our hypothesis that the ADP-ribosylation of arginine is a model for the NAD-dependent activation of adenylate cyclase; activation may result from ADP-ribosylation of the cyclase itself or of a protein that regulates its activity.

UI MeSH Term Description Entries
D009244 NAD+ Nucleosidase An enzyme that catalyzes the hydrolysis of nicotinamide adenine dinucleotide (NAD) to NICOTINAMIDE and ADENOSINE DIPHOSPHATE RIBOSE. Some are extracellular (ectoenzymes).The enzyme from some sources also catalyses the hydrolysis of nicotinamide adenine dinucleotide phosphate (NADP). DPNase,Diphosphopyridine Nucleotidase,NAD+ Glycohydrolase,NADase,Diphosphopyridine Nucleotidases,Ecto-NAD+ Glycohydrolase,NAD(P) Nucleosidase,NAD+ Nucleosidases,NAD-Glycohydrolase,NAD-Glycohydrolases,NADP Nucleosidase,NADP-Glycohydrolase,NADases,Ecto NAD+ Glycohydrolase,Glycohydrolase, Ecto-NAD+,Glycohydrolase, NAD+,NAD Glycohydrolase,NAD Glycohydrolases,NADP Glycohydrolase,Nucleosidase, NAD+,Nucleosidase, NADP,Nucleosidases, NAD+,Nucleotidase, Diphosphopyridine,Nucleotidases, Diphosphopyridine
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000247 Adenosine Diphosphate Sugars Esters formed between the aldehydic carbon of sugars and the terminal phosphate of adenosine diphosphate. ADP Sugars,Diphosphate Sugars, Adenosine,Sugars, ADP,Sugars, Adenosine Diphosphate
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D012266 Ribose A pentose active in biological systems usually in its D-form. D-Ribose,D Ribose

Related Publications

J Moss, and S H Richardson
December 1981, The Journal of biological chemistry,
J Moss, and S H Richardson
April 1984, Biochemical Society transactions,
J Moss, and S H Richardson
March 1976, The Journal of infectious diseases,
Copied contents to your clipboard!