Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromuscular junction. 1978

E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey

1. The temperature dependence of presynaptic processes involved in neuromuscular transmission was studied by rapidly increasing the temperature of cooled frog neuromuscular junctions by 4--10 degrees C using pulses from a neodymium laser. The temperature elevation was complete within 0.5 msec, and decayed back to control levels with a time constant of about 7--8 sec. 2. Temperature jumps completed before nerve stimulation increased the quantal content and decreased the latency of the end-plate potential (e.p.p.). The Q10 for e.p.p. quantal content in low [Ca2+] Ringer averaged about 3.9 over the range 1--18 degrees C. 3. Temperature jumps occurring during the synaptic delay (the interval between the presynaptic action potential and the onset of the e.p.p.) also increased the quantal content and decreased the latency of the e.p.p. These effects diminished as the onset of the temperature jump was moved closer to the expected onset of the e.p.p. Temperature jumps applied after the onset of the e.p.p. immediately accelerated the time course of the e.p.p. but did not significantly alter quantal content. These results demonstrate that the magnitude and timing of evoked release are influenced by temperature-sensitive processes that operate both during and shortly after the presynaptic nerve action potential, but are largely complete before the onset of release. 4. Temperature jumps were applied at various times during the interval between two nerve stimuli. The amplitude of the second e.p.p. decreased as the temperature jump was moved earlier in the interstimulus interval, suggesting that the rise in temperature following the first nerve stimulus accelerates the decay of facilitation. When the temperature jump was moved from 10 msec after to 10 msec before the onset of the first e.p.p., the amplitude of the second e.p.p. either decreased or showed no change. The fact that the second e.p.p. did not increase suggests that the temperature-sensitive processes that increase the quantal content of the conditioning e.p.p. do not greatly increase the facilitation following that e.p.p. 5. Temperature jumps immediately accelerated the time course of spontaneous miniature end-plate potentials (m.e.p.p.s) and increased their frequency. Experiments using slow temperature changes revealed that the Q10 for m.e.p.p. frequency in normal Ringer is about 10 over the range 10--20 degrees C. M.e.p.p. frequency was much less sensitive to temperature changes below about 10 degrees C. When the nerve terminal was depolarized by 20 mM-K+ in the presence of Ca2+, the Q10 for the rate of spontaneous release over the range 10--20 degrees C decreased to about 4, similar to the Q10 for e.p.p. quantal content. In the absence of extracellular Ca2+ the Q10 for m.e.p.p. frequency in 20 mM-K+ remained near 10. 6. The marked difference in Q10S for spontaneous transmitter release under different experimental conditions suggests that not all transmitter release uses identical mechanisms...

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
January 1978, The Yale journal of biology and medicine,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
January 1977, Journal of neuroscience research,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
May 1978, The Journal of physiology,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
October 2003, Neuropharmacology,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
October 1975, Nature,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
January 2001, Journal of neurophysiology,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
January 1988, Fundamental & clinical pharmacology,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
January 1981, Experientia,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
August 2002, British journal of pharmacology,
E F Barrett, and J N Barrett, and D Botz, and D B Chang, and D Mahaffey
May 1981, Brain research,
Copied contents to your clipboard!