Mechanisms of post-synaptic excitation in amphibian motoneurones. 1978

A I Shapovalov, and B I Shiriaev, and A A Velumian

1. Post-synaptic excitation produced in motoneurones of the isolated perfused frog spinal cord by different monosynaptic inputs and by ionophoretically applied glutamate was analysed with intracellular recording technique. 2. Ca2+-deficient, high Mg2+ (5--20 mM) media or addition of Mn2+ (2mM) or Co2+ (5 mM) reversibly abolished chemically mediated e.p.s.p.s derived from medullary reticular formation, ventral and lateral columns, but not the short-latency, rapidly rising e.p.s.p.s derived from dorsal roots or muscle nerves, suggesting electric coupling between some primary afferents and spinal motoneurones. This conclusion is consistent with the dynamic properties of dorsal root e.p.s.p.s, their small sensitivity to cooling, and with results of correction of intracellular records made for contribution of extracellular field potential. E.p.s.p.s evoked by ventral root stimulation were also insensitive to Ca2+-lack and presence of 5--10 mM-Mg2+. 3. As the post-synaptic membrane was made more negative the amplitude of electrotonic dorsal root e.p.s.p.s was increased, and it was decreased by depolarizing currents. No reversal of the early part of the electrotonic e.p.s.p. was observed, although the presence of the local response would account for the occasional reversal of its later phase seen with depolarization. 4. When hyperpolarizing and depolarizing currents were applied to motoneurones in which chemically mediated e.p.s.p.s of the reticular cells, the ventral and lateral columns, were evoked, the actual reversal of the early part of e.p.s.p. was not observed, and there was no correlation between the sensitivity of the e.p.s.p.s to injected currents and their time course. The positive values of the extrapolated reversal potentials and the effects of changes in ionic content of perfusing media suggest that synaptically released transmitter triggers off the Na permeability of the subsynaptic membrane. 5. The amplitude of depolarization produced by ionophoretically applied glutamate depends non-linearly on membrane potential and the curvature of this dependence differs from that seen with chemically mediated s.p.s.p.s. The asymptotic nature of this relationship is explicable by a dependence of the membrane conductance change upon the membrane voltage. 6. The results of conductance measurements during the glutamate induced depolarization, the values of apparent reversal potentials and their dependence on external Na+ and K+ and internal Cl- is explicable by the opening post-synaptic channel gates for Na+ and closing post-synaptic channel gates for K+. 7. Chemical and electrical transmission in the amphibian cord is discussed in relation to recent anatomical findings.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D013126 Spinal Nerve Roots Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS. Dorsal Roots,Spinal Roots,Ventral Roots,Dorsal Root,Nerve Root, Spinal,Nerve Roots, Spinal,Root, Dorsal,Root, Spinal,Root, Spinal Nerve,Root, Ventral,Roots, Dorsal,Roots, Spinal,Roots, Spinal Nerve,Roots, Ventral,Spinal Nerve Root,Spinal Root,Ventral Root
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

A I Shapovalov, and B I Shiriaev, and A A Velumian
October 1961, Acta physiologica Scandinavica,
A I Shapovalov, and B I Shiriaev, and A A Velumian
November 1985, The Journal of physiology,
A I Shapovalov, and B I Shiriaev, and A A Velumian
March 1946, Journal of neurophysiology,
A I Shapovalov, and B I Shiriaev, and A A Velumian
November 1979, The Journal of physiology,
A I Shapovalov, and B I Shiriaev, and A A Velumian
January 1966, Acta physiologica Scandinavica,
A I Shapovalov, and B I Shiriaev, and A A Velumian
August 1967, The Journal of physiology,
A I Shapovalov, and B I Shiriaev, and A A Velumian
April 1963, Nature,
A I Shapovalov, and B I Shiriaev, and A A Velumian
March 2021, The Journal of physiology,
A I Shapovalov, and B I Shiriaev, and A A Velumian
November 1955, The Journal of physiology,
A I Shapovalov, and B I Shiriaev, and A A Velumian
January 1999, Journal of physiology, Paris,
Copied contents to your clipboard!