Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. 2011

Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
EMBL, Meyerhofstrasse 1, Heidelberg, Germany. gavin@embl.de

Cellular functions are the result of the coordinated action of groups of proteins interacting in molecular assemblies or pathways. The systematic and unbiased charting of protein-protein networks in a variety of organisms has become an important challenge in systems biology. These protein-protein interaction networks contribute comprehensive cartographies of key pathways or biological processes relevant to health or disease by providing a molecular frame for the interpretation of genetic links. At a structural level protein-protein networks enabled the identification of the sequences, motifs and structural folds involved in the process of molecular recognition. A rapidly growing choice of technologies is available for the global charting of protein-protein interactions. In this review, we focus on recent developments in a suite of methods that enable the purification of protein complexes under native conditions and, in conjunction with protein mass spectrometry, identification of their constituents.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D046912 Multiprotein Complexes Macromolecular complexes formed from the association of defined protein subunits. Macromolecular Protein Complexes,Complexes, Macromolecular Protein,Complexes, Multiprotein,Protein Complexes, Macromolecular
D049490 Systems Biology Comprehensive, methodical analysis of complex biological systems by monitoring responses to perturbations of biological processes. Large scale, computerized collection and analysis of the data are used to develop and test models of biological systems. Biology, Systems
D020816 Amino Acid Motifs Three-dimensional protein structural elements that are composed of a combination of secondary structures. They include HELIX-LOOP-HELIX MOTIFS and ZINC FINGERS. Motifs are typically the most conserved regions of PROTEIN DOMAINS and are critical for domain function. However, the same motif may occur in proteins or enzymes with different functions. AA Motifs,Motifs, Amino Acid,Protein Motifs,Protein Structure, Supersecondary,Supersecondary Protein Structure,AA Motif,Amino Acid Motif,Motif, AA,Motif, Amino Acid,Motif, Protein,Motifs, AA,Motifs, Protein,Protein Motif,Protein Structures, Supersecondary,Supersecondary Protein Structures

Related Publications

Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
January 2023, Advances in experimental medicine and biology,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
January 2014, Advances in protein chemistry and structural biology,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
August 2009, Expert review of proteomics,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
June 2023, Current opinion in chemical biology,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
September 2021, Mass spectrometry reviews,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
July 2017, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
October 2023, Current opinion in chemical biology,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
September 2022, Molecules (Basel, Switzerland),
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
January 2019, Computational and structural biotechnology journal,
Anne-Claude Gavin, and Kenji Maeda, and Sebastian Kühner
November 2020, Analytica chimica acta,
Copied contents to your clipboard!