Ionic mechanisms of cellular electrical and mechanical abnormalities in Brugada syndrome. 2011

Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
Department of Pharmacology and Cell Biophysics, 2Neuroscience Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575, USA.

The Brugada syndrome (BrS) is a right ventricular (RV) arrhythmia that is responsible for up to 12% of sudden cardiac deaths. The aims of our study were to determine the cellular mechanisms of the electrical abnormality in BrS and the potential basis of the RV contractile abnormality observed in the syndrome. Tetrodotoxin was used to reduce cardiac Na(+) current (I(Na)) to mimic a BrS-like setting in canine ventricular myocytes. Moderate reduction (<50%) of I(Na) with tetrodotoxin resulted in all-or-none repolarization in a fraction of RV epicardial myocytes. Dynamic clamp and modeling show that reduction of I(Na) shifts the action potential (AP) duration-transient outward current (I(to)) density curve to the left and has a biphasic effect on AP duration. In the presence of a large I(to), I(Na) reduction either prolongs or collapses the AP, depending on the exact density of I(to). These repolarization changes reduce Ca(2+) influx and sarcoplasmic reticulum load, resulting in marked attenuation of myocyte contraction and Ca(2+) transient in RV epicardial myocytes. We conclude that I(Na) reduction alters repolarization by reducing the threshold for I(to)-induced all-or-none repolarization. These cellular electrical changes suppress myocyte excitation-contraction coupling and contraction and may be a contributing factor to the contractile abnormality of the RV wall in BrS.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
January 2000, Journal of electrocardiology,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
May 1999, Current opinion in cardiology,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
February 2001, Journal of cardiovascular electrophysiology,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
January 2016, Current problems in cardiology,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
July 2003, Expert review of cardiovascular therapy,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
April 2012, Journal of cardiovascular electrophysiology,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
May 2001, The American journal of medicine,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
March 2001, European heart journal,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
January 2016, Current problems in cardiology,
Min Dong, and Paul J Niklewski, and Hong-Sheng Wang
October 2002, Circulation,
Copied contents to your clipboard!