Quercetin inhibits human DLD-1 colon cancer cell growth and polyamine biosynthesis. 2010

Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
Laboratory of Experimental Biochemistry, Scientific Institute for Digestive Diseases, IRCCS Saverio de Bellis, I-70013 Castellana G, BA, Italy.

OBJECTIVE Polyamines and ornithine decarboxylase are involved in cell growth and differentiation. The polyphenol quercetin may exert anti-tumour properties by influencing proliferation, differentiation, and apoptosis. The aim of the study was to investigate the effects of increasing concentrations of quercetin (from 0.1 to 100 μM) on polyamine biosynthesis, cell proliferation, and apoptosis in the DLD-1 cells. METHODS Polyamine levels and ornithine decarboxylase activity were evaluated by HPLC and radiometric technique, respectively. The proliferative response was estimated by 3-(4,5 dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) test and [(3)H]-thymidine incorporation in cell DNA. Apoptosis was investigated by DNA fragmentation. RESULTS At concentrations ≥50 μM, quercetin significantly reduced ornithine decarboxylase activity, putrescine and spermidine levels compared to controls and cells treated with 0.1 μM concentration. Quercetin concentrations ≥70 μM caused a significant reduction in the conversion of MTT tetrazolium salt and [(3)H]-thymidine incorporation. The same concentrations were needed to induce the apoptosis. CONCLUSIONS The present study demonstrates that quercetin can affect growth of DLD-1 cells by both decreasing polyamine biosynthesis and inducing apoptosis. Due to the extensive dietary consumption of polyphenols, such as quercetin, the biological activity of these compounds deserves further investigation.

UI MeSH Term Description Entries
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D011794 Quercetin A flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. 3,3',4',5,7-Pentahydroxyflavone,Dikvertin
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D015317 Biogenic Polyamines Biogenic amines having more than one amine group. These are long-chain aliphatic compounds that contain multiple amino and/or imino groups. Because of the linear arrangement of positive charge on these molecules, polyamines bind electrostatically to ribosomes, DNA, and RNA. Polyamines, Biogenic
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
December 2005, Scandinavian journal of gastroenterology,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
January 2005, Nutrition and cancer,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
April 2020, Medical science monitor : international medical journal of experimental and clinical research,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
July 2001, The Journal of pharmacology and experimental therapeutics,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
January 2001, Biochemical pharmacology,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
January 2020, Turkish journal of biology = Turk biyoloji dergisi,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
September 2010, IUBMB life,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
November 2005, Bioorganic & medicinal chemistry,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
January 1993, Anticancer research,
Michele Linsalata, and Antonella Orlando, and Caterina Messa, and Maria Grazia Refolo, and Francesco Russo
January 2009, Bratislavske lekarske listy,
Copied contents to your clipboard!