Comparison of a radioimmunoprecipitation assay to immunoblotting and ELISA for detection of antibody to African swine fever virus. 1990

C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
Instituto Nacional de Investigaciones Agrarias, Departamento de Sanidad Animal, Madrid, Spain.

A radioimmunoprecipitation assay (RIPA) has been developed for detection of antibody to African swine fever virus (ASFV) and compared with the immunoblot assay with regard to sensitivity and specificity. Two hundred seven field sera, obtained from pigs in Spain from different geographic areas between 1975 and 1986, that were positive by ASFV enzyme-linked immunosorbent assay (ELISA) were also analysed by immunoblot assay and RIPA. By serum dilution experiments, the RIPA appeared at least as sensitive as the ELISA and immunoblotting tests, although ELISA and RIPA detected antibodies to ASFV earlier in natural infection than did the immunoblot assay, as disclosed by animal inoculation studies. The most antigenic ASFV-induced proteins in natural infection detected by RIPA were the viral proteins p243, p172, p73, p25.5, p15, and p12 and the infection proteins p30 and p23.5. In the immunoblot assay, the proteins that were most reactive with the same sera were the viral protein p25.5 and the infection proteins p30, p25, and p21.5. Only 1 serum, from an animal infected with ASFV, was negative by immunoblot assay but showed a positive result by RIPA. A modification of conventional RIPA was performed using a dot transference of immunoprecipitated proteins to a nitrocellulose filter. This modification simplified the conventional RIPA procedures by eliminating the electrophoresis of immunoprecipitated proteins without affecting sensitivity and specificity. The ease of use, specificity, and the sensitivity comparable to that of the immunoblot assay make the RIPA a useful confirmatory assay for sera that yield conflicting results in other ASFV antibody assays.

UI MeSH Term Description Entries
D011237 Predictive Value of Tests In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test. Negative Predictive Value,Positive Predictive Value,Predictive Value Of Test,Predictive Values Of Tests,Negative Predictive Values,Positive Predictive Values,Predictive Value, Negative,Predictive Value, Positive
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D000357 African Swine Fever A sometimes fatal ASFIVIRUS infection of pigs, characterized by fever, cough, diarrhea, hemorrhagic lymph nodes, and edema of the gallbladder. It is transmitted between domestic swine by direct contact, ingestion of infected meat, or fomites, or mechanically by biting flies or soft ticks (genus Ornithodoros). Swine Fever, African,African Swine Fever Virus Infection,Asfivirus Infection,Wart-Hog Disease,Asfivirus Infections,Infection, Asfivirus,Infections, Asfivirus,Wart Hog Disease,Wart-Hog Diseases
D000358 African Swine Fever Virus The lone species of the genus Asfivirus. It infects domestic and wild pigs, warthogs, and bushpigs. Disease is endemic in domestic swine in many African countries and Sardinia. Soft ticks of the genus Ornithodoros are also infected and act as vectors. Wart-Hog Disease Virus,Virus, Wart-Hog Disease,Wart Hog Disease Virus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings
D015531 Radioimmunoprecipitation Assay Sensitive assay using radiolabeled ANTIGENS to detect specific ANTIBODIES in SERUM. The antigens are allowed to react with the serum and then precipitated using a special reagent such as PROTEIN A sepharose beads. The bound radiolabeled immunoprecipitate is then commonly analyzed by gel electrophoresis. Farr Assay,Radioimmunoprecipitation Analysis,Analyses, Radioimmunoprecipitation,Analysis, Radioimmunoprecipitation,Assay, Farr,Assay, Radioimmunoprecipitation,Assays, Radioimmunoprecipitation,Radioimmunoprecipitation Analyses,Radioimmunoprecipitation Assays

Related Publications

C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
January 1989, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
August 1993, The Veterinary record,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
January 2021, Frontiers in veterinary science,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
August 1981, American journal of veterinary research,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
September 2021, Journal of clinical microbiology,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
January 1988, Journal of medical virology,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
February 2006, Journal of virological methods,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
January 2019, Frontiers in veterinary science,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
October 1979, The Journal of hygiene,
C Alcaraz, and M De Diego, and M J Pastor, and J M Escribano
January 2024, International journal of biological macromolecules,
Copied contents to your clipboard!