Unveiling the methylation status of CpG dinucleotides in the substituted segment of the human p53 knock-in (Hupki) mouse genome. 2010

Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
Department of Cancer Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, USA.

Methylated cytosines within CpG dinucleotides (mCpGs) along the DNA-binding domain of the TP53 tumor suppressor gene (exons ~5-8) are the single most significant mutational target in human cancers. The human p53 knock-in (Hupki) mouse model was constructed using gene-targeting technology to create a mouse strain that harbors human wild-type TP53 DNA sequences spanning exons 4-9 in both copies of the mouse p53 gene. To date, however, the methylation status of cytosines within CpGs in the substituted segment of the Hupki mouse genome has not been determined. This lack of information deserves special attention because DNA methylation in mammals, which occurs almost exclusively within CpG dinucleotides, is a dynamic process throughout developmental stages and may vary among different species. Here, we have investigated the status of CpG methylation in the substituted segment of the Hupki mouse genome, and compared it to the methylation profile of the corresponding segment in the human genome using the combined bisulfite-restriction analysis and sodium bisulfite genomic sequencing. We found that all cytosines within CpGs of the TP53 DNA-binding domain, on both the coding and noncoding strands, were heavily methylated in Hupki fibroblasts, as they were in human fibroblasts. This is in keeping with the fully methylated status of TP53 CpGs that is known to prevail in adult human tissues. The remarkably similar patterns of cytosine methylation within CpG dinucleotides in Hupki cells and human cells further validates the suitability of mutagenesis assays in Hupki cells for experimental induction of TP53 mutations that have been observed in human tumors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016158 Genes, p53 Tumor suppressor genes located on the short arm of human chromosome 17 and coding for the phosphoprotein p53. Genes, TP53,TP53 Genes,p53 Genes,Gene, TP53,Gene, p53,TP53 Gene,p53 Gene
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53

Related Publications

Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
August 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
December 2010, Molecular bioSystems,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
December 1988, Gene,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
December 1998, Mutation research,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
December 2020, Archives of toxicology,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
September 1995, DNA and cell biology,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
October 2005, Carcinogenesis,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
April 2021, Environmental and molecular mutagenesis,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
November 2001, Cancer research,
Sang-In Kim, and Monica Hollstein, and Gerd P Pfeifer, and Ahmad Besaratinia
April 2010, The Journal of biological chemistry,
Copied contents to your clipboard!