ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites. 2010

Philippe Lefrançois, and Wei Zheng, and Michael Snyder
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA.

Much of eukaryotic gene regulation is mediated by binding of transcription factors near or within their target genes. Transcription factor binding sites (TFBS) are often identified globally using chromatin immunoprecipitation (ChIP) in which specific protein-DNA interactions are isolated using an antibody against the factor of interest. Coupling ChIP with high-throughput DNA sequencing allows identification of TFBS in a direct, unbiased fashion; this technique is termed ChIP-Sequencing (ChIP-Seq). In this chapter, we describe the yeast ChIP-Seq procedure, including the protocols for ChIP, input DNA preparation, and Illumina DNA sequencing library preparation. Descriptions of Illumina sequencing and data processing and analysis are also included. The use of multiplex short-read sequencing (i.e., barcoding) enables the analysis of many ChIP samples simultaneously, which is especially valuable for organisms with small genomes such as yeast.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D047369 Chromatin Immunoprecipitation A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing. Immunoprecipitation, Chromatin
D059014 High-Throughput Nucleotide Sequencing Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc. High-Throughput Sequencing,Illumina Sequencing,Ion Proton Sequencing,Ion Torrent Sequencing,Next-Generation Sequencing,Deep Sequencing,High-Throughput DNA Sequencing,High-Throughput RNA Sequencing,Massively-Parallel Sequencing,Pyrosequencing,DNA Sequencing, High-Throughput,High Throughput DNA Sequencing,High Throughput Nucleotide Sequencing,High Throughput RNA Sequencing,High Throughput Sequencing,Massively Parallel Sequencing,Next Generation Sequencing,Nucleotide Sequencing, High-Throughput,RNA Sequencing, High-Throughput,Sequencing, Deep,Sequencing, High-Throughput,Sequencing, High-Throughput DNA,Sequencing, High-Throughput Nucleotide,Sequencing, High-Throughput RNA,Sequencing, Illumina,Sequencing, Ion Proton,Sequencing, Ion Torrent,Sequencing, Massively-Parallel,Sequencing, Next-Generation

Related Publications

Philippe Lefrançois, and Wei Zheng, and Michael Snyder
January 2012, Methods in molecular biology (Clifton, N.J.),
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
January 2013, Methods in molecular biology (Clifton, N.J.),
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
August 2017, Nature protocols,
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
September 2008, Nature methods,
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
January 2023, Methods in molecular biology (Clifton, N.J.),
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
September 2008, Nucleic acids research,
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
February 2011, PloS one,
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
November 2013, Bioinformatics (Oxford, England),
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
October 2018, BMC research notes,
Philippe Lefrançois, and Wei Zheng, and Michael Snyder
January 2010, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!