The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams. 2010

Jeffrey C Wolchok, and Patrick A Tresco
The Keck Center for Tissue Engineering, Department of Bioengineering, College of Engineering, University of Utah, 20 S 2030 E Building, 570 BPRB, Room 108D, Salt Lake City, UT 84112, USA.

Extracellular matrix derived from human and animal tissues is being used to repair and reconstruct a variety of tissues clinically. The utility of such constructs is limited by the geometry, composition and constitutive properties of the tissue or organ from which the ECM is harvested. To address this limitation, we have developed an approach to isolate extracellular matrix in bulk from populations of living cells grown in culture on three-dimensional substrates. Human biopsy derived fibroblasts were seeded within open-cell foams and cultured in-vitro for periods up to three weeks, after which the synthetic component was removed by incubation in a water miscible solvent. After several wash steps and lyophilization, a white, lacy, multi-molecular construct was isolated. Tandem mass spectroscopy showed that it contained 22 extracellular matrix constituents, including such proteins and proteoglycans as collagen type I and type III, fibronectin, transforming growth factor beta, decorin and biglycan among others. On average 47 mg of construct was isolated for each gram of synthetic substrate initially seeded with cells. The biomaterial harvested from human tracheal fibroblasts had an elastic modulus (250 kPa) and a composition similar to that of human vocal fold tissue, and supported reseeding with human tracheal derived fibroblasts. An important finding was that the approach was useful in isolating ECM from a variety of cell lineages and developmental stages including skin fibroblasts, brain derived astrocytes and mesenchymal stem cells. The results, together with the archival literature, suggest that the approach can be used to produce a range of cell derived constructs with unique physical and chemical attributes for a variety of research and medical applications.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible

Related Publications

Jeffrey C Wolchok, and Patrick A Tresco
December 2017, Biomedical materials (Bristol, England),
Jeffrey C Wolchok, and Patrick A Tresco
January 2015, BioResearch open access,
Jeffrey C Wolchok, and Patrick A Tresco
December 2019, Journal of visualized experiments : JoVE,
Jeffrey C Wolchok, and Patrick A Tresco
April 2017, Journal of visualized experiments : JoVE,
Jeffrey C Wolchok, and Patrick A Tresco
October 2013, Journal of biomedical materials research. Part A,
Jeffrey C Wolchok, and Patrick A Tresco
February 2019, Journal of visualized experiments : JoVE,
Jeffrey C Wolchok, and Patrick A Tresco
July 1996, The Journal of biological chemistry,
Jeffrey C Wolchok, and Patrick A Tresco
March 2010, Journal of biomedical materials research. Part A,
Copied contents to your clipboard!