[A chlorotetracycline fluorescent probe--an indicator of calcium ion binding with calcium-binding proteins]. 1990

V P Nikitin, and M O Samoĭlov

It has been found in in vitro experiments that fluorescence intensity of deionized solution containing a chlorotetracycline fluorescent probe increases insignificantly at the addition of calmodulin of S-100 proteins. Subsequent introduction of Ca2+ into the medium results in the pronounced fluorescence increase depending on Ca2+ concentration. Addition of specific protein blockers--W7 (calmodulin inhibitor) and antibodies to S-100 brought about a decrease of fluorescence. In in vivo experiments on chlorotetracycline-stained neurons of Helix Pomatia ganglia subesophageal complex it has been shown that bringing of antibodies to S-100 and calmodulin significantly decreases the fluorescence intensity of these cells. These data suggest that the chlorotetracycline probe is an indicator of calcium ions binding with calcium-binding proteins both in in vitro and in vivo systems.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002751 Chlortetracycline A TETRACYCLINE with a 7-chloro substitution. Aureocyclin,Aureomycin,Aureomycine,Biomycin,Chlorotetracycline,Chlortetracycline Bisulfate,Chlortetracycline Hydrochloride,Chlortetracycline Monohydrochloride,Chlortetracycline Sulfate (1:1),Chlortetracycline Sulfate (2:1),Chlortetracycline, 4-Epimer,Chlortetracycline, Calcium Salt,4-Epimer Chlortetracycline,Bisulfate, Chlortetracycline,Calcium Salt Chlortetracycline,Chlortetracycline, 4 Epimer,Hydrochloride, Chlortetracycline,Monohydrochloride, Chlortetracycline,Salt Chlortetracycline, Calcium
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006372 Helix, Snails A genus of chiefly Eurasian and African land snails including the principal edible snails as well as several pests of cultivated plants. Helix (Snails),Snails Helix
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V P Nikitin, and M O Samoĭlov
May 1978, Journal of neurochemistry,
V P Nikitin, and M O Samoĭlov
February 2019, Nature methods,
V P Nikitin, and M O Samoĭlov
March 1978, The Journal of cell biology,
V P Nikitin, and M O Samoĭlov
May 1976, Biochimica et biophysica acta,
V P Nikitin, and M O Samoĭlov
October 1980, European journal of biochemistry,
V P Nikitin, and M O Samoĭlov
November 2005, Chemistry & biology,
V P Nikitin, and M O Samoĭlov
December 1991, European journal of biochemistry,
V P Nikitin, and M O Samoĭlov
September 2013, Sensors (Basel, Switzerland),
V P Nikitin, and M O Samoĭlov
January 1981, Cellular and molecular biology, including cyto-enzymology,
Copied contents to your clipboard!