Metabolic stress-induced programmed cell death in Xanthomonas. 2010

Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
Bhabha Atomic Research Centre, Mumbai, India.

Xanthomonas campestris pv. glycines (Xcg), an etiological agent of the bacterial pustule disease of soybean, displayed nutritionally regulated caspase-dependent programmed cell death (PCD). Experiments showed that Xcg was under metabolic stress during PCD, as evident from the intracellular accumulation of NADH and ATP. Further, the accumulation of reactive oxygen species (ROS), as confirmed by 2',7'-dichlorofluorescein diacetate labeling, electron spin resonance spectroscopy, and scopoletin assay, was also observed along with the activation of caspase-3. ROS scavengers such as dimethylsulfoxide, glutathione, n-propyl gallate, and catalase significantly inhibited caspase biosynthesis as well as its activity, eventually leading to the inhibition of PCD. The presence of a sublethal concentration of an electron transport chain uncoupler, 2,4-dinitrophenol, was found to reduce the ROS generation and the increase in the cell survival. These results indicated that Xcg cells grown in a protein-rich medium experienced metabolic stress due to electron leakage from the electron transport chain, leading to the generation of ROS and the expression as well as the activation of caspase-3, and resulting in PCD. A bacterial DNA gyrase inhibitor, nalidixic acid, was also found to inhibit PCD. Gyrase, which regulates DNA superhelicity, and consequently DNA replication and cell multiplication, appears to be involved in the process.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009268 Nalidixic Acid A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE. Nalidixin,Nalidixate Sodium,Nalidixate Sodium Anhydrous,Nevigramon,Sodium Nalidixic Acid, Anhydrous,Sodium Nalidixic Acid, Monohydrate,Acid, Nalidixic,Anhydrous, Nalidixate Sodium,Sodium Anhydrous, Nalidixate,Sodium, Nalidixate
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical
D016959 Xanthomonas campestris A species of gram-negative, aerobic bacteria that is pathogenic for plants. Achromobacter lunatus,Bacillus campestris,Bacterium campestre,Phytomonas campestris,Pseudomonas campestris
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
May 2002, Yi chuan = Hereditas,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
December 2021, Current protein & peptide science,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
January 2024, International microbiology : the official journal of the Spanish Society for Microbiology,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
January 2015, Frontiers in plant science,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
May 2004, Journal of cell science,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
October 2002, Cell death and differentiation,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
June 1999, European journal of pharmacology,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
October 2006, Cell death and differentiation,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
May 2009, Plant physiology and biochemistry : PPB,
Surbhi Wadhawan, and Satyendra Gautam, and Arun Sharma
March 2021, Journal of fungi (Basel, Switzerland),
Copied contents to your clipboard!