Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. 2010

Paul Schanda, and Beat H Meier, and Matthias Ernst
ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland. pasa@nmr.phys.chem.ethz.ch

Characterization of protein dynamics by solid-state NMR spectroscopy requires robust and accurate measurement protocols, which are not yet fully developed. In this study, we investigate the backbone dynamics of microcrystalline ubiquitin using different approaches. A rotational-echo double-resonance type (REDOR-type) methodology allows one to accurately measure (1)H-(15)N order parameters in highly deuterated samples. We show that the systematic errors in the REDOR experiment are as low as 1% or even less, giving access to accurate data for the amplitudes of backbone mobility. Combining such dipolar-coupling-derived order parameters with autocorrelated and cross-correlated (15)N relaxation rates, we are able to quantitate amplitudes and correlation times of backbone dynamics on picosecond and nanosecond time scales in a residue-resolved manner. While the mobility on picosecond time scales appears to have rather uniform amplitude throughout the protein, we unambiguously identify and quantitate nanosecond mobility with order parameters S(2) as low as 0.8 in some regions of the protein, where nanosecond dynamics has also been revealed in solution state. The methodology used here, a combination of accurate dipolar-coupling measurements and different relaxation parameters, yields details about dynamics on different time scales and can be applied to solid protein samples such as amyloid fibrils or membrane proteins.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D019906 Nuclear Magnetic Resonance, Biomolecular NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope. Biomolecular Nuclear Magnetic Resonance,Heteronuclear Nuclear Magnetic Resonance,NMR Spectroscopy, Protein,NMR, Biomolecular,NMR, Heteronuclear,NMR, Multinuclear,Nuclear Magnetic Resonance, Heteronuclear,Protein NMR Spectroscopy,Biomolecular NMR,Heteronuclear NMR,Multinuclear NMR,NMR Spectroscopies, Protein,Protein NMR Spectroscopies,Spectroscopies, Protein NMR,Spectroscopy, Protein NMR
D025801 Ubiquitin A highly conserved 76-amino acid peptide universally found in eukaryotic cells that functions as a marker for intracellular PROTEIN TRANSPORT and degradation. Ubiquitin becomes activated through a series of complicated steps and forms an isopeptide bond to lysine residues of specific proteins within the cell. These "ubiquitinated" proteins can be recognized and degraded by proteosomes or be transported to specific compartments within the cell. APF-1,ATP-Dependent Proteolysis Factor 1,HMG-20,High Mobility Protein 20,Ubiquitin, Human,ATP Dependent Proteolysis Factor 1,Human Ubiquitin

Related Publications

Paul Schanda, and Beat H Meier, and Matthias Ernst
July 2012, Proceedings of the National Academy of Sciences of the United States of America,
Paul Schanda, and Beat H Meier, and Matthias Ernst
June 2005, Journal of the American Chemical Society,
Paul Schanda, and Beat H Meier, and Matthias Ernst
September 2004, Journal of the American Chemical Society,
Paul Schanda, and Beat H Meier, and Matthias Ernst
March 2006, Journal of the American Chemical Society,
Paul Schanda, and Beat H Meier, and Matthias Ernst
May 2015, Protein science : a publication of the Protein Society,
Paul Schanda, and Beat H Meier, and Matthias Ernst
June 1999, Journal of magnetic resonance (San Diego, Calif. : 1997),
Paul Schanda, and Beat H Meier, and Matthias Ernst
September 2009, Journal of biomolecular NMR,
Paul Schanda, and Beat H Meier, and Matthias Ernst
September 2003, European biophysics journal : EBJ,
Paul Schanda, and Beat H Meier, and Matthias Ernst
November 2003, Journal of the American Chemical Society,
Paul Schanda, and Beat H Meier, and Matthias Ernst
September 2006, Journal of the American Chemical Society,
Copied contents to your clipboard!