Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells. 1990

L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115.

Heparin is a potent inhibitor of vascular smooth muscle cell (VSMC) growth. In this paper we show that heparin suppressed the induction of c-fos and c-myc mRNA in rat and calf VSMC. This effect of heparin is closely associated with its growth-inhibitory activity, as shown by isolating and characterizing a strain of rat VSMC that was resistant to heparin's antiproliferative effect; heparin did not suppress c-fos mRNA induction in these cells. Moreover, neither a nonantiproliferative heparin fragment or other glycosaminoglycans that lack growth-inhibitory activity repressed c-fos or c-myc mRNA levels. The effect of heparin on c-fos mRNA induction was selective for specific mitogens, as heparin inhibited c-fos mRNA induction in phorbol 12-myristate 13-acetate (TPA) stimulated but not epidermal growth factor (EGF) stimulated VSMC. The effect of heparin on gene expression is independent of ongoing protein synthesis, and inhibition of c-fos mRNA is at the transcriptional level. These results suggest that heparin may selectively inhibit a protein kinase C-dependent pathway for protooncogene induction and that this may be one mechanism used by heparin to inhibit cell proliferation.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
October 1988, FEBS letters,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
July 2007, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
December 1992, Japanese circulation journal,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
December 1990, European journal of biochemistry,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
January 1990, The American journal of physiology,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
January 1999, Zhonghua yi xue za zhi,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
February 2002, Sheng li xue bao : [Acta physiologica Sinica],
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
July 2009, Cellular signalling,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
January 1990, Biochemistry international,
L A Pukac, and J J Castellot, and T C Wright, and B L Caleb, and M J Karnovsky
December 1990, Biochemical Society transactions,
Copied contents to your clipboard!