Bone resorptive activity of osteoclast-like cells generated in vitro by PEG-induced macrophage fusion. 2010

Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
Physiological Sciences Department, Universidad Nacional de Colombia, Bogota, Colombia.

Normal bone remodeling is maintained by a balance between osteoclast and osteoblast activity, whereas defects in osteoclast activity affecting such balance result in metabolic bone disease. Macrophage-macrophage fusion leading to multinucleated osteoclasts being formed is still not well understood. Here we present PEG-induced fusion of macrophages from both U937/A and J774 cell lines and the induced differentiation and activation of osteoclast-like cells according to the expression of osteoclast markers such as tartrate resistant acid phosphatase (TRAP) and bone resorptive activity. PEG-induced macrophage fusion, during the non-confluent stage, significantly increased the osteoclastogenic activity of macrophages from cell lines compared to that of spontaneous cell fusion in the absence of PEG (polyethylene glycol). The results shown in this work provide evidence that cell fusion per se induces osteoclast-like activity. PEG-fused macrophage differential response to pretreatment with osteoclastogenic factors was also examined in terms of its ability to form TRAP positive multinucleated cells (TPMNC) and its resorptive activity on bovine cortical bone slices. Our work has also led to a relatively simple method regarding those previously reported involving cell co-cultures. Multinucleated osteoclast-like cells obtained by PEG-induced fusion of macrophages from cell lines could represent a suitable system for conducting biochemical studies related to basic macrophage fusion mechanisms, bone-resorption activity and the experimental search for bone disease therapeutic alternatives.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
November 2013, Clinical and experimental immunology,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
June 2000, The Journal of endocrinology,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
January 2011, PloS one,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
January 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
September 1988, Scanning microscopy,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
February 2015, Archives of oral biology,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
March 1991, Endocrinology,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
June 2001, Rheumatology (Oxford, England),
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
June 2017, Journal of molecular histology,
Andrea Murillo, and Carlos A Guerrero, and Orlando Acosta, and Carmen A Cardozo
January 2003, Arthritis research & therapy,
Copied contents to your clipboard!