Apotransferrin protects cortical neurons from hemoglobin toxicity. 2011

Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, College Building Room 813, Philadelphia, PA 19107, USA.

The protective effect of iron chelators in experimental models of intracerebral hemorrhage suggests that nonheme iron may contribute to injury to perihematomal cells. Therapy with high affinity iron chelators is limited by their toxicity, which may be due in part to sequestration of metals in an inaccessible complex. Transferrin is unique in chelating iron with very high affinity while delivering it to cells as needed via receptor-mediated endocytosis. However, its efficacy against iron-mediated neuronal injury has never been described, and was therefore evaluated in this study using an established cell culture model of hemoglobin neurotoxicity. At concentrations similar to that of CSF transferrin (50-100 micrograms/ml), both iron-saturated holotransferrin and apotransferrin were nontoxic per se. Overnight exposure to 3 μM purified human hemoglobin in serum-free culture medium resulted in death, as measured by lactate dehydrogenase release assay, of about three-quarters of neurons. Significant increases in culture iron, malondialdehyde, protein carbonyls, ferritin and heme oxygenase-1 were also observed. Holotransferrin had no effect on these parameters, but all were attenuated by 50-100 micrograms/ml apotransferrin. The effect of apotransferrin was very similar to that of deferoxamine at a concentration that provided equivalent iron binding capacity, and was not antagonized by concomitant treatment with holotransferrin. Transferrin receptor-1 expression was localized to neurons and was not altered by hemoglobin or transferrin treatment. These results suggest that apotransferrin may mitigate the neurotoxicity of hemoglobin after intracerebral hemorrhage. Increasing its concentration in perihematomal tissue may be beneficial.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002543 Cerebral Hemorrhage Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA. Brain Hemorrhage, Cerebral,Cerebral Parenchymal Hemorrhage,Hemorrhage, Cerebral,Intracerebral Hemorrhage,Hemorrhage, Cerebrum,Brain Hemorrhages, Cerebral,Cerebral Brain Hemorrhage,Cerebral Brain Hemorrhages,Cerebral Hemorrhages,Cerebral Parenchymal Hemorrhages,Cerebrum Hemorrhage,Cerebrum Hemorrhages,Hemorrhage, Cerebral Brain,Hemorrhage, Cerebral Parenchymal,Hemorrhage, Intracerebral,Hemorrhages, Cerebral,Hemorrhages, Cerebral Brain,Hemorrhages, Cerebral Parenchymal,Hemorrhages, Cerebrum,Hemorrhages, Intracerebral,Intracerebral Hemorrhages,Parenchymal Hemorrhage, Cerebral,Parenchymal Hemorrhages, Cerebral
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001059 Apoproteins The protein components of a number of complexes, such as enzymes (APOENZYMES), ferritin (APOFERRITINS), or lipoproteins (APOLIPOPROTEINS). Apoprotein
D014168 Transferrin An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states. Siderophilin,Isotransferrin,Monoferric Transferrins,Serotransferrin,Transferrin B,Transferrin C,beta 2-Transferrin,beta-1 Metal-Binding Globulin,tau-Transferrin,Globulin, beta-1 Metal-Binding,Metal-Binding Globulin, beta-1,Transferrins, Monoferric,beta 1 Metal Binding Globulin,beta 2 Transferrin,tau Transferrin

Related Publications

Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
January 2011, European journal of pharmacology,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
July 1996, Neuroscience letters,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
March 2000, Neuroscience letters,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
July 2001, Neuroreport,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
July 2006, Journal of neuroscience research,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
April 2006, Stroke,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
September 2000, Neuroscience letters,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
January 2020, Journal of Huntington's disease,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
January 2019, Journal of Huntington's disease,
Jing Chen-Roetling, and Lifen Chen, and Raymond F Regan
September 2008, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Copied contents to your clipboard!