Optimization of temperature-controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid chromatography for analysis of chlorobenzenes in water samples. 2010

Fahimeh Kamarei, and Homeira Ebrahimzadeh, and Yadollah Yamini
Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran, Iran.

Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME) combined with high performance liquid chromatography-diode array detection (HPLC-DAD) was applied for preconcentration and determination of chlorobenzenes in well water samples. The proposed method used 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) as the extraction solvent. The effect of different variables on extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the TCIL-DLPME were extraction solvent volume, salt effect, solution temperature, extraction time, centrifugation time, and heating time. The Plackett-Burman design was employed for screening to determine the variables significantly affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were developed. The optimal experimental conditions obtained from this statistical evaluation included: extraction solvent volume, 75 μL; extraction time, 20 min; centrifugation time, 25 min; heating time, 4 min; solution temperature, 50 °C; and no addition of salt. Under optimal conditions, the preconcentration factors were between 187 and 298. The limit of detections (LODs) ranged from 0.05 μg L(-1) (for 1,2-dichlorobenzene) to 0.1 μg L(-1) (for 1,2,3-trichlorobenzene). Linear dynamic ranges (LDRs) of 0.5-300 and 0.5-500 μg L(-1) were obtained for dichloro- and trichlorobenzenes, respectively. The performance of the method was evaluated for extraction and determination of chlorobenzenes in well water samples in micrograms per liter and satisfactory results were obtained (RSDs<9.2%).

UI MeSH Term Description Entries
D002722 Chlorobenzenes Aromatic organic compounds with the chemical formula C6H5Cln.
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005591 Chemical Fractionation Separation of a mixture in successive stages, each stage removing from the mixture some proportion of one of the substances, for example by differential solubility in water-solvent mixtures. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Fractionation, Chemical,Chemical Fractionations,Fractionations, Chemical
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D052578 Ionic Liquids Salts that melt below 100 C. Their low VOLATILIZATION can be an advantage over volatile organic solvents. Ionic Liquid,Ionic Solvents,Liquid, Ionic,Liquids, Ionic,Solvents, Ionic
D057230 Limit of Detection Concentration or quantity that is derived from the smallest measure that can be detected with reasonable certainty for a given analytical procedure. Limits of Detection,Detection Limit,Detection Limits

Related Publications

Fahimeh Kamarei, and Homeira Ebrahimzadeh, and Yadollah Yamini
September 2011, Analytica chimica acta,
Fahimeh Kamarei, and Homeira Ebrahimzadeh, and Yadollah Yamini
January 2013, Journal of chromatography. A,
Fahimeh Kamarei, and Homeira Ebrahimzadeh, and Yadollah Yamini
January 2017, Journal of AOAC International,
Copied contents to your clipboard!