Dielectric properties of glucose in bulk aqueous solutions: Influence of electrode polarization and modeling. 2011

Gilwon Yoon
Department of Electronics & Information, Seoul National University of Science and Technology, 172 Gongneung-dong, Nowon-gu, Seoul 139-743, South Korea. gyoon@snut.ac.kr.

Impedance spectroscopy was applied to determine glucose concentration in the interstitial fluid for its potential use in diabetic monitoring. For this purpose, the changes in the measured dielectric properties due to the presence of glucose in water and saline solutions were examined between 40 Hz and 110 MHz. Electrode polarization (EP) was a dominant factor which shaped the spectrum at low frequencies. A theoretical model of EP using a constant phase-angle-element produced excellent matches to the measured data. By fitting the measured data to the model, the relative permittivity (ɛ(h)) and conductivity (σ(l)) were obtained. For deionized water, the relative permittivity dropped from 80.1 to 73.2 and conductivity ranged between 0.142 and 0.212 mS/m when the glucose concentration was increased from 0 to 32 g/dl. For the same variation of glucose level in 0.15 M NaCl, ɛ(h) was reduced from 79.8 to 71.5 and σ(l) decreased from 1.384 to 0.522 S/m. Glucose level produced a definite change in dielectric properties. However, the changes within the physiological range of glucose (less than a few hundred mg/dl) were small and appeared to be within the measurement error.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D017097 Electric Impedance The resistance to the flow of either alternating or direct electrical current. Bioelectrical Impedance,Electric Resistance,Impedance,Ohmic Resistance,Biolectric Impedance,Electrical Impedance,Electrical Resistance,Impedance, Bioelectrical,Impedance, Biolectric,Impedance, Electric,Impedance, Electrical,Ohmic Resistances,Resistance, Electric,Resistance, Electrical,Resistance, Ohmic,Resistances, Ohmic
D058266 Dielectric Spectroscopy A technique of measuring the dielectric properties of materials, which vary over a range of frequencies depending on the physical properties of the material. The technique involves measuring, over a range of frequencies, ELECTRICAL IMPEDANCE and phase shift of an electric field as it passes through the material. Electrochemical Impedance Spectroscopy,Impedance Spectroscopy,Electrochemical Impedance Spectroscopies,Impedance Spectroscopies,Impedance Spectroscopies, Electrochemical,Impedance Spectroscopy, Electrochemical,Spectroscopies, Electrochemical Impedance,Spectroscopies, Impedance,Spectroscopy, Dielectric,Spectroscopy, Electrochemical Impedance,Spectroscopy, Impedance

Related Publications

Gilwon Yoon
December 2005, IEEE transactions on bio-medical engineering,
Gilwon Yoon
January 2001, The Journal of microwave power and electromagnetic energy : a publication of the International Microwave Power Institute,
Gilwon Yoon
September 2013, The journal of physical chemistry. B,
Gilwon Yoon
October 2016, Journal of physics. Condensed matter : an Institute of Physics journal,
Gilwon Yoon
November 2010, Journal of physics. Condensed matter : an Institute of Physics journal,
Gilwon Yoon
February 2007, Physical review. E, Statistical, nonlinear, and soft matter physics,
Gilwon Yoon
May 1976, Biopolymers,
Copied contents to your clipboard!