| D011992 |
Endosomes |
Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface. |
Receptosomes,Endosome,Receptosome |
|
| D002352 |
Carrier Proteins |
Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. |
Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D055503 |
Protein Multimerization |
The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. |
Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein |
|
| D018345 |
Mice, Knockout |
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. |
Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out |
|
| D021381 |
Protein Transport |
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. |
Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein |
|
| D021601 |
trans-Golgi Network |
A network of membrane compartments, located at the cytoplasmic side of the GOLGI APPARATUS, where proteins and lipids are sorted for transport to various locations in the cell or cell membrane. |
trans-Golgi Region,Network, trans-Golgi,Region, trans-Golgi,Regions, trans-Golgi,trans Golgi Network,trans Golgi Region,trans-Golgi Regions |
|
| D033921 |
Vesicular Transport Proteins |
A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported. |
Transport Proteins, Vesicular |
|
| D033942 |
Adaptor Proteins, Vesicular Transport |
A class of proteins involved in the transport of molecules via TRANSPORT VESICLES. They perform functions such as binding to the cell membrane, capturing cargo molecules and promoting the assembly of CLATHRIN. The majority of adaptor proteins exist as multi-subunit complexes, however monomeric varieties have also been found. |
Clathrin Adaptor,Clathrin Adaptor Protein Complex,Clathrin Assembly Protein,Clathrin Assembly Protein Complex,Clathrin Assembly Proteins,Clathrin-Associated Adaptor,Clathrin-Associated Protein,Vesicular Transport Adaptor Protein,Vesicular Transport Adaptor Protein Complex,Vesicular Transport Adaptor Proteins,Adaptor Protein Complexes, Vesicular Transport,Clathrin Adaptor Protein Complexes,Clathrin Adaptors,Clathrin Assembly Protein Complexes,Clathrin-Associated Adaptors,Clathrin-Associated Proteins,Vesicular Transport Adaptor Protein Complexes,Adaptor, Clathrin,Adaptor, Clathrin-Associated,Adaptors, Clathrin,Adaptors, Clathrin-Associated,Assembly Protein, Clathrin,Assembly Proteins, Clathrin,Clathrin Associated Adaptor,Clathrin Associated Adaptors,Clathrin Associated Protein,Clathrin Associated Proteins,Protein, Clathrin Assembly,Protein, Clathrin-Associated |
|