Characterization of an HIV-1 point mutant blocked in envelope glycoprotein cleavage. 1990

H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, Maryland 20892.

The envelope proteins of retroviruses are derived from a polypeptide precursor protein by cleavage adjacent to a cluster of basic amino acids. Site-specific mutagenesis was used to construct a mutant of the human immunodeficiency virus type 1 (HIV-1) in which the arginine residue at the carboxy-terminus of the gp120 was changed to a threonine residue. This single substitution was sufficient to abolish all detectable cleavage of the gp160 envelope precursor polypeptide as well as virus infectivity. The gp160 was produced in normal quantities from a biologically active clone of the mutant virus after transfection into cos-1 cells. The mutant gp160 contained N-linked oligosaccharide chains with mannose-rich cores similar to those of the gp160 produced by the wild-type clone. Immunofluorescence assays showed that gp160 was transported to the surface of transfected CD4+ HeLa cells. No envelope proteins of known size could be detected in the media of cells transfected with the mutant virus, suggesting that functional virions were not formed. Binding of the mutant gp160 to the CD4 receptor molecule was unimpaired. Despite this and the presence of gp160 on the cell surface, neither growth of mutant-transfected CD4+ HeLa cells nor cocultivation of transfected cos-1 cells with H9 cells resulted in significant syncytium formation. The data indicate that the carboxy-terminal arginine residue of HIV-1 gp120 is necessary for envelope protein cleavage and suggest cleavage is important in the virus life cycle in both functional virus release and membrane fusion.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
March 2002, Chemistry (Weinheim an der Bergstrasse, Germany),
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
March 2020, The Analyst,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
September 2013, Journal of virology,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
April 2013, Current opinion in structural biology,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
December 1996, Virology,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
June 1989, Journal of neuroscience research,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
August 2003, Chembiochem : a European journal of chemical biology,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
September 2009, Current opinion in HIV and AIDS,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
July 2009, Journal of bioscience and bioengineering,
H G Guo, and F M Veronese, and E Tschachler, and R Pal, and V S Kalyanaraman, and R C Gallo, and M S Reitz
September 1988, Nature,
Copied contents to your clipboard!