Aflatoxin-DNA adduct formation in chronically dosed rats fed a choline-deficient diet. 1990

T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
Boston University School of Medicine, Department of Pathology, MA 02118.

Nutritional modulation of male Fischer rats by a choline-deficient/methionine-low diet dramatically increases hepatocarcinogenesis and reduces time to first tumors induced by aflatoxin B1 (AFB1). The effect of this diet on hepatic aflatoxin-DNA adduct burden in male Fischer rats dosed with a carcinogenic regimen of AFB1 was examined in this study. After 3 weeks of ingestion of a choline-deficient/methionine-low diet or control semi-purified diet, rats were administered a carcinogenic regimen of 25 micrograms [3H]AFB1 for 5 days a week over 2 weeks. Six choline-deficient and four control diet rats were killed 2 h after each dose, and liver DNA isolated. In addition, hepatic DNA was isolated from animals 1, 2, 3, and 11 days after the last [3H]AFB1 administration. At all time points HPLC analysis of aflatoxin-DNA adducts was performed to confirm radiometric determinations of DNA binding levels. No significant quantitative differences in AFB1-DNA adduct formation between the dietary groups were observed following the first exposure to [3H]AFB1; however, total aflatoxin-DNA adduct levels in the choline-deficient animals were significantly increased during the multiple dose schedule. When total aflatoxin-DNA adduct levels were integrated over the 10 day dose period, a 41% increase in adduct burden was determined for the choline-deficient animals. While this increase in DNA damage is consistent with the hypothesis that DNA damage is related to tumor outcome, the biochemical basis for this effect still needs to be elucidated.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D011865 Radioisotope Dilution Technique Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed) Radioisotope Dilution Technic,Dilution Technic, Radioisotope,Dilution Technics, Radioisotope,Dilution Technique, Radioisotope,Dilution Techniques, Radioisotope,Radioisotope Dilution Technics,Radioisotope Dilution Techniques,Technic, Radioisotope Dilution,Technics, Radioisotope Dilution,Technique, Radioisotope Dilution,Techniques, Radioisotope Dilution
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002796 Choline Deficiency A condition produced by a deficiency of CHOLINE in animals. Choline is known as a lipotropic agent because it has been shown to promote the transport of excess fat from the liver under certain conditions in laboratory animals. Combined deficiency of choline (included in the B vitamin complex) and all other methyl group donors causes liver cirrhosis in some animals. Unlike compounds normally considered as vitamins, choline does not serve as a cofactor in enzymatic reactions. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) Deficiency, Choline,Choline Deficiencies,Deficiencies, Choline
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
January 1987, Carcinogenesis,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
August 1990, Carcinogenesis,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
June 1974, Research communications in chemical pathology and pharmacology,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
February 1973, Lipids,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
February 1960, The American journal of physiology,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
September 1986, Cancer research,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
September 1971, Lipids,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
November 1974, The Journal of nutrition,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
January 1990, Progress in clinical and biological research,
T F Schrager, and P M Newberne, and A H Pikul, and J D Groopman
August 1986, Carcinogenesis,
Copied contents to your clipboard!