Use of denaturing gradient gel electrophoresis to detect point mutations in the factor VIII gene. 1990

M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Point mutations in the factor VIII gene are responsible for the majority of cases of hemophilia A, and only a small fraction of these mutations can be recognized by restriction endonuclease analysis. We have now used polymerase chain reaction and denaturing gradient gel electrophoresis to characterize single nucleotide substitutions in the factor VIII gene. Five regions of the gene were studied: exon 8, the 3' end of exon 14, exon 17, exon 18, and exon 24. A GC clamp was attached to the 5' PCR primer to allow detection of the majority of single base changes in DNA fragments ranging from 249 to 356 bp. Ten of eleven known point mutations were definitively separated. Fifty-two patients with unknown mutations were then studied by these methods, and the disease-producing mutation was found in three. First, we identified a new missense mutation in exon 14 which is the likely cause of hemophilia A in one patient (tyrosine changed to cysteine at amino acid residue 1709). Second, we found a new missense mutation in exon 18 in one patient (asparagine to aspartic acid at amino acid residue 1922). Third, a previously described mutation in exon 24 was detected (arginine changed to glutamine at amino acid residue 2209). In addition, a new polymorphic nucleotide substitution was found in intron 7. Moreover, these mutations can be detected when the GC-clamped PCR products from all five regions are run in the same denaturing gel. Our results indicate that denaturing gradient gel electrophoresis can be successfully applied to the analysis of point mutations in large genes whose transcripts are not readily available.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005169 Factor VIII Factor VIII of blood coagulation. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin. Coagulation Factor VIII,Factor VIII Clotting Antigen,Factor VIII Coagulant Antigen,Factor VIII Procoagulant Activity,Thromboplastinogen,Blood Coagulation Factor VIII,F VIII-C,Factor 8,Factor 8 C,Factor Eight,Factor VIIIC,Hyate-C,Hyatt-C,F VIII C,Hyate C,HyateC,Hyatt C,HyattC
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006467 Hemophilia A The classic hemophilia resulting from a deficiency of factor VIII. It is an inherited disorder of blood coagulation characterized by a permanent tendency to hemorrhage. Factor VIII Deficiency,Hemophilia,Autosomal Hemophilia A,Classic Hemophilia,Deficiency, Factor VIII,Factor 8 Deficiency, Congenital,Factor VIII Deficiency, Congenital,Haemophilia,Hemophilia A, Congenital,Hemophilia, Classic,As, Autosomal Hemophilia,Autosomal Hemophilia As,Classic Hemophilias,Congenital Hemophilia A,Congenital Hemophilia As,Hemophilia A, Autosomal,Hemophilia As,Hemophilia As, Autosomal,Hemophilia As, Congenital,Hemophilias, Classic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
January 1998, Human mutation,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
March 1990, Proceedings of the National Academy of Sciences of the United States of America,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
March 1998, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
December 1997, Electrophoresis,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
September 1994, Environmental health perspectives,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
January 1989, Electrophoresis,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
December 1998, Clinical chemistry and laboratory medicine,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
January 2004, Methods in molecular biology (Clifton, N.J.),
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
January 1994, Human mutation,
M D Traystman, and M Higuchi, and C K Kasper, and S E Antonarakis, and H H Kazazian
May 2001, Current protocols in human genetics,
Copied contents to your clipboard!