Isolation and characterization of proteoglycans synthesized by mouse osteoblastic cells in culture during the mineralization process. 1990

Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Japan.

Proteoglycans in mineralized (0.5 M-EDTA/4 M-guanidinium chloride-extractable) and non-mineralized (4 M-guanidinium chloride-extractable) matrices synthesized by a mouse osteoblastic-cell line MC3T3-E1 were characterized at different phases of mineralization in vitro. Cell cultures were labelled with [35S]sulphate and either [3H]glucosamine or 3H-labelled amino acids. At the mineralization phase a large majority of proteoglycans were extracted with 4 M-guanidinium chloride (G extract), and at least five species of labelled proteoglycans were identified; dermatan sulphate proteoglycans (DSPG), apparent Mr approx. 120,000 and 70,000), heparan sulphate proteoglycans (HSPG, apparent Mr approx. 200,000 and 120,000) and DS chains with very little core protein. DSPGs weakly bound to an octyl-Sepharose CL-4B column and HSPGs bound more tightly, whereas DS chains did not bind to the column. Amounts of labelled proteoglycans extracted with 0.5 M-EDTA/4 M-guanidinium chloride (EDTA extract) were much less than those in G extract. Although the predominant species in the EDTA extract were comparable with the DS or DSPGs in the G extract, none of them bound to octyl-Sepharose CL-4B, indicating their lack of hydrophobicity. At the nonmineralizing phase a large chondroitin sulphate proteoglycan (Mr greater than 600,000) was found in the matrix in addition to the five proteoglycan species similar to those at the mineralization phase. Although DS chains at the early phase were similar in size to those at the mineralization phase, the ratio of 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulpho-D-galactose to 2-acetamido-2-deoxy-3-O-(beta-D-gluculo-4-enepyranosyluronic acid)-6-O-sulpho-D-galactose was less than that at the mineralization phase. These results agree with those of previous studies performed in vivo and suggest that alteration in the synthesis of proteoglycans is involved in the mineralization process. They also suggest that at the osteoblastic mineralization front proteoglycans undergo partial degradation and lose their hydrophobicity.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008903 Minerals Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Mineral
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D011508 Chondroitin Sulfate Proteoglycans Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains. Proteochondroitin Sulfates,Chondroitin Sulfate Proteoglycan,Proteochondroitin Sulfate,Proteoglycan, Chondroitin Sulfate,Proteoglycans, Chondroitin Sulfate,Sulfate Proteoglycan, Chondroitin,Sulfate Proteoglycans, Chondroitin
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D003871 Dermatan Sulfate A naturally occurring glycosaminoglycan found mostly in the skin and in connective tissue. It differs from CHONDROITIN SULFATE A (see CHONDROITIN SULFATES) by containing IDURONIC ACID in place of glucuronic acid, its epimer, at carbon atom 5. (from Merck, 12th ed) Chondroitin Sulfate B,beta-Heparin,Sulfate B, Chondroitin,Sulfate, Dermatan,beta Heparin

Related Publications

Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
January 1981, Vision research,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
April 2007, Biochemistry. Biokhimiia,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
January 1990, The Journal of biological chemistry,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
March 1993, Journal of periodontal research,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
July 1991, The Biochemical journal,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
March 1990, Archives of biochemistry and biophysics,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
January 1983, The Journal of cell biology,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
November 1983, The Journal of biological chemistry,
Y Takeuchi, and T Matsumoto, and E Ogata, and Y Shishiba
December 1982, The Journal of biological chemistry,
Copied contents to your clipboard!